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Lattice

I Γ is a lattice in R2:

For example Γ = Z2.



Periodic potentials

I A1, A2 and V are functions from R2 to R
periodic with respect to Γ.

I A := (A1,A2) is the magnetic potential.

I V is the electric potential.



Periodic potentials

I A1, A2 and V are functions from R2 to R
periodic with respect to Γ.

I A := (A1,A2) is the magnetic potential.

I V is the electric potential.



Periodic potentials

I A1, A2 and V are functions from R2 to R
periodic with respect to Γ.

I A := (A1,A2) is the magnetic potential.

I V is the electric potential.



Periodic potentials

I A1, A2 and V are functions from R2 to R
periodic with respect to Γ.

I A := (A1,A2) is the magnetic potential.

I V is the electric potential.



Hamiltonian

I Hamiltonian
H = (i∇+ A)2 + V

acting on L2(R2), where ∇ is the gradient on R2.
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H has no eigenfunctions in L2(R2).
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Translational symmetry

I But H commutes with translations:

HTγ = TγH for all γ ∈ Γ,

where

Tγ : ϕ(x) 7→ ϕ(x + γ).



Bloch theory

I Hence there are simultaneous eigenvectors for
{ H and Tγ for all γ ∈ Γ }

H ϕn,k = En(k)ϕn,k ,

Tγ ϕn,k = eik ·γ ϕn,k for all γ ∈ Γ,

where k ∈ R2 and n ∈ {1,2,3, . . . }.

ϕn,k ( · + γ) =
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Bloch theory

I Equivalently, if we define

Hk := e−ik ·xH eik ·x = (i∇+ A− k)2 + V ,

we may consider the k -family of problems

Hk ψn,k = En(k)ψn,k for ψn,k ∈ L2(R2/Γ).

I The spectrum of Hk is discrete:

E1(k) ≤ E2(k) ≤ · · · ≤ En(k) ≤ · · ·
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Bloch theory

I The function k 7→ En(k) is periodic with respect to the
dual lattice

Γ# := {b ∈ R2 | b · γ ∈ 2πZ for all γ ∈ Γ}.

I This framework is preserved if we complexify:

A1,A2,V ∈ C and k ∈ C2.
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Fermi curve

I The real lifted Fermi curve:

F̂λ,R := {k ∈ R2 | En(k) = λ for some n ≥ 1}
= {k ∈ R2 | (Hk − λ)ϕ = 0 for some ϕ ∈ DHk \ {0}}.

I Without loss of generality

A−
∫

A→ A, V − λ→ V , k → k +
∫

A.

I The complex lifted Fermi curve:

F̂ := {k ∈ C2 | Hk ϕ = 0 for some ϕ ∈ DHk \ {0}}.
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Fermi curve: properties

The Fermi curve is:

1. Analytic:
F̂ = {k ∈ C2 | F (k) = 0},

where F (k) is an analytic function on C2.

2. Periodic with respect to Γ#:

F̂ + b = F̂ for all b ∈ Γ#.

3. Gauge invariant:

F̂ is invariant under A→ A +∇Ψ.
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The free Hamiltonian

I Set A = 0 and V = 0. Then

{eib·x | b ∈ Γ#}

is a basis of L2(R2/Γ) of eigenfunctions of Hk :

Hk eib·x = (i∇− k)2 eib·x

= (−b − k)2 eib·x =: Nb(k) eib·x

= Nb,1(k)Nb,2(k) eib·x

where

Nb,ν(k) := (k1 + b1) + i(−1)ν(k2 + b2).
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The free Fermi curve

I Define

Nb := {k ∈ C2 | (k1 + b1)2 + (k2 + b2)2 = 0},
Nν(b) := {k ∈ C2 | (k1 + b1) + i(−1)ν(k2 + b2) = 0}.

Hence, for A = 0 and V = 0,

F̂ = {k ∈ C2 | Nb(k) = 0 for some b ∈ Γ#}

=
⋃

b∈Γ#

Nb =
⋃

b∈Γ#

ν∈{1,2}

Nν(b).
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Sketch of the free Fermi curve (for ik1 and k2 real)

N2(0)

N2(b) N1(−b)

N1(0)
N1(b)N2(−b)

k2

ik1

k2

ik1

F̂ F := F̂/Γ#



Main results

I Let 2Λ be the length of the shortest b in Γ#.
I Fix ε < Λ/6.
I Assume that A and V “are differentiable”.
I Notation: F̂ ≡ F̂(A,V )

“Theorem”.
Suppose that ‖A‖L2 . ε (small).
Then, outside of a compact set (asymptotically),
the curve F̂(A,V ) is very close to F̂(0,0),
except that:
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Remarks

I Generically all double points open up:
1-D complex manifold.

I For A = 0 proved by
Feldman, Knörrer and Trubowitz (2003).

I The proof is perturbative. (We follow their strategy.)

I Large A ?
Some ideas... speculations...
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Idea of proof

I Write

Hk = (i∇+ A− k)2 + V

= (i∇− k)2 + 2A · (i∇− k) + q

where

q := (i∇ · A) + A2 + V .



Idea of proof

I Then k ∈ F̂(A,V ) if and only if[
(i∇− k)2 + 2A · (i∇− k) + q

]
ϕ = 0

for ϕ ∈ L2(R2/Γ) with ϕ 6= 0, or, equivalently,

[
Nc(k)δb,c−2(c +k) ·Â(b−c)+ q̂(b−c)

]
b,c∈Γ#

 |
ϕ̂(c)
|


c∈Γ#

= 0,

where f̂ (b) =
∫
R2/Γ f (x) e−ib·xdx .

(Recall L2(R2/Γ) ' l2(Γ#).)
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Idea of proof

I ε-tubes about Nb:

Tb := T1(b) ∪ T2(b),

Tν(b) := {k ∈ C2 | |Nb,ν(k)| < ε}.

I Write
k = u + iv with u, v ∈ R2.

Then
k /∈ Tb =⇒ |Nb(k)| ≥ ε|v |.
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Idea of proof

I Let G = {0} or G = {0,d} with 0,d ∈ Γ#.
We can split our equation:[

Nc(k)δb,c−2(c + k) · Â(b−c) + q̂(b−c)
]

b∈G
c∈Γ#

 |
ϕ̂(c)
|


c∈Γ#

= 0,

[
Nc(k)δb,c−2(c+k)·Â(b−c)+q̂(b−c)

]
b∈Γ#\G

c∈Γ#

 |
ϕ̂(c)
|


c∈Γ#

= 0.
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Idea of proof

I We can rewrite the second equation:

[
Nc(k)δb,c−2(c+k)·Â(b−c)+q̂(b−c)
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]
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|
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Idea of proof

I Rewriting again the second equation:

[
δb,c −

2(c + k)

Nc(k)
· Â(b − c) +

q̂(b − c)
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]
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=:RG′G′
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G′G′
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· · ·
][
ϕ̂(c)

]
c∈G
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Idea of proof

I Substituting in the first equation
we conclude that it has a solution if and only if

det

Nd ′(k)δd ′,d ′′ + wd ′,d ′′ −
∑

b,c∈G′

wd ′,b

Nb(k)
(R−1

G′G′)b,cwc,d ′′


d ′,d ′′∈G

= 0,

where
wb,c := −2(c + k) · Â(b − c) + q̂(b − c).

This is a |G| × |G| determinant.



Idea of proof

Hence we have local defining equations for F̂(A,V ):

I Deformed planes (G = {0}):

N0(k) + D00(k) = 0.

I Handles (G = {0,d}):

(N0(k) + D00(k))(Nd (k) + Ddd (k)) = D0,dDd ,0.

where

Dd ′,d ′′(k) := Bd ′d ′′

11 k2
1 + Bd ′d ′′

22 k2
2 + (Bd ′d ′′

12 + Bd ′d ′′

21 )k1k2

+ Cd ′d ′′

1 k1 + Cd ′d ′′

2 k2 + Cd ′d ′′

0 .



Idea of proof

I Linear change of variables:

(k1, k2) 7→ (w , z),

where w is “small” and z is “large”.

I Asymptotics for the coefficients:

Φd ′,d ′′(k) :=
∑

b,c∈G′

f (d ′ − b)

Nb(k)
(R−1

G′G′)b,c g(c − d ′′)

= O(1) + O
(

1
z

)
+ O

(
1
z2

)
.
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= O(1) + O
(

1
z

)
+ O

(
1
z2

)
.
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I Asymptotics for the derivatives:

∂n+m

∂zm∂wn Φd ′,d ′′(k) = O(1) + O
(

1
z
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+ O

(
1
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.

I Proof: Chain rule; Leibniz rule; 1
1−X = 1 + X + X 2 + · · ·

I Implicit function theorem.

I Quantitative Morse lemma.
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