Asymptotics for Fermi curves of electric and magnetic periodic fields

Gustavo de Oliveira

UBC - July 2009

Outline

Introduction

New results

Comments on the proof

Lattice

- Γ is a lattice in \mathbb{R}^{2} :

For example $\Gamma=\mathbb{Z}^{2}$.

Periodic potentials

- A_{1}, A_{2} and V are functions from \mathbb{R}^{2} to \mathbb{R}
- $A:=\left(A_{1}, A_{2}\right)$ is the magnetic potential.
- V is the electric potential.

Periodic potentials

- A_{1}, A_{2} and V are functions from \mathbb{R}^{2} to \mathbb{R} periodic with respect to Γ.
- $A:=\left(A_{1}, A_{2}\right)$ is the magnetic potential.
- V is the electric potential.

Periodic potentials

- A_{1}, A_{2} and V are functions from \mathbb{R}^{2} to \mathbb{R} periodic with respect to Γ.
- $A:=\left(A_{1}, A_{2}\right)$ is the magnetic potential.
- V is the electric potential.

Periodic potentials

- A_{1}, A_{2} and V are functions from \mathbb{R}^{2} to \mathbb{R} periodic with respect to Γ.
- $A:=\left(A_{1}, A_{2}\right)$ is the magnetic potential.
- V is the electric potential.

Hamiltonian

- Hamiltonian

$$
H=(i \nabla+A)^{2}+V
$$

acting on $L^{2}\left(\mathbb{R}^{2}\right)$, where ∇ is the gradient on \mathbb{R}^{2}.

- Spectrum of H is continuous:

Hamiltonian

- Hamiltonian

$$
H=(i \nabla+A)^{2}+V
$$

acting on $L^{2}\left(\mathbb{R}^{2}\right)$, where ∇ is the gradient on \mathbb{R}^{2}.

- Spectrum of H is continuous:
H has no eigenfunctions in $L^{2}\left(\mathbb{R}^{2}\right)$.

Translational symmetry

- But H commutes with translations:

$$
H T_{\gamma}=T_{\gamma} H \quad \text { for all } \gamma \in \Gamma
$$

where

$$
T_{\gamma}: \varphi(x) \mapsto \varphi(x+\gamma)
$$

Bloch theory

- Hence there are simultaneous eigenvectors for $\left\{H\right.$ and T_{γ} for all $\gamma \in \Gamma$ \}
$H \varphi_{n, k}=E_{n}(k) \varphi_{n, k}$,
where $k \in \mathbb{R}^{2}$ and $n \in\{1,2,3, \ldots\}$.

Bloch theory

- Hence there are simultaneous eigenvectors for $\left\{H\right.$ and T_{γ} for all $\gamma \in \Gamma$ \}

$$
\begin{aligned}
H \varphi_{n, k} & =E_{n}(k) \varphi_{n, k}, \\
T_{\gamma} \varphi_{n, k} & =e^{i k \cdot \gamma} \varphi_{n, k} \quad \text { for all } \gamma \in \Gamma,
\end{aligned}
$$

where $k \in \mathbb{R}^{2}$ and $n \in\{1,2,3, \ldots\}$.

Bloch theory

- Hence there are simultaneous eigenvectors for $\left\{H\right.$ and T_{γ} for all $\gamma \in \Gamma$ \}

$$
\begin{aligned}
H \varphi_{n, k} & =E_{n}(k) \varphi_{n, k}, \\
\varphi_{n, k}(\cdot+\gamma)= & \\
T_{\gamma} \varphi_{n, k} & =e^{i k \cdot \gamma} \varphi_{n, k} \quad \text { for all } \gamma \in \Gamma,
\end{aligned}
$$

where $k \in \mathbb{R}^{2}$ and $n \in\{1,2,3, \ldots\}$.

Bloch theory

- Equivalently, if we define

$$
H_{k}:=e^{-i k \cdot x} H e^{i k \cdot x}=(i \nabla+A-k)^{2}+V
$$

we may consider the k-family of problems

$$
H_{k} \psi_{n, k}=E_{n}(k) \psi_{n, k} \quad \text { for } \quad \psi_{n, k} \in L^{2}\left(\mathbb{R}^{2} / \Gamma\right)
$$

- The spectrum of H_{k} is discrete:

$$
E_{1}(k) \leq E_{2}(k) \leq \cdots \leq E_{n}(k) \leq
$$

Bloch theory

- Equivalently, if we define

$$
H_{k}:=e^{-i k \cdot x} H e^{i k \cdot x}=(i \nabla+A-k)^{2}+V,
$$

we may consider the k-family of problems

$$
H_{k} \psi_{n, k}=E_{n}(k) \psi_{n, k} \quad \text { for } \quad \psi_{n, k} \in L^{2}\left(\mathbb{R}^{2} / \Gamma\right)
$$

- The spectrum of H_{k} is discrete:

$$
E_{1}(k) \leq E_{2}(k) \leq \cdots \leq E_{n}(k) \leq
$$

Bloch theory

- Equivalently, if we define

$$
H_{k}:=e^{-i k \cdot x} H e^{i k \cdot x}=(i \nabla+A-k)^{2}+V,
$$

we may consider the k-family of problems

$$
H_{k} \psi_{n, k}=E_{n}(k) \psi_{n, k} \quad \text { for } \quad \psi_{n, k} \in L^{2}\left(\mathbb{R}^{2} / \Gamma\right)
$$

- The spectrum of H_{k} is discrete:

$$
E_{1}(k) \leq E_{2}(k) \leq \cdots \leq E_{n}(k) \leq
$$

Bloch theory

- Equivalently, if we define

$$
H_{k}:=e^{-i k \cdot x} H e^{i k \cdot x}=(i \nabla+A-k)^{2}+V,
$$

we may consider the k-family of problems

$$
H_{k} \psi_{n, k}=E_{n}(k) \psi_{n, k} \quad \text { for } \quad \psi_{n, k} \in L^{2}\left(\mathbb{R}^{2} / \Gamma\right)
$$

- The spectrum of H_{k} is discrete:

$$
E_{1}(k) \leq E_{2}(k) \leq \cdots \leq E_{n}(k) \leq \cdots
$$

Bloch theory

- The function $k \mapsto E_{n}(k)$ is periodic with respect to the dual lattice

$$
\Gamma^{\#}:=\left\{b \in \mathbb{R}^{2} \mid b \cdot \gamma \in 2 \pi \mathbb{Z} \text { for all } \gamma \in \Gamma\right\}
$$

- This framework is preserved if we complexify:

Bloch theory

- The function $k \mapsto E_{n}(k)$ is periodic with respect to the dual lattice

$$
\Gamma^{\#}:=\left\{b \in \mathbb{R}^{2} \mid b \cdot \gamma \in 2 \pi \mathbb{Z} \text { for all } \gamma \in \Gamma\right\}
$$

- This framework is preserved if we complexify:

$$
A_{1}, A_{2}, V \in \mathbb{C} \quad \text { and } \quad k \in \mathbb{C}^{2} .
$$

Fermi curve

- The real lifted Fermi curve:
$\widehat{\mathcal{F}}_{\lambda, \mathbb{R}}:=\left\{k \in \mathbb{R}^{2} \mid E_{n}(k)=\lambda\right.$ for some $\left.n \geq 1\right\}$

$$
=\left\{k \in \mathbb{R}^{2} \mid\left(H_{k}-\lambda\right) \varphi=0 \quad \text { for some } \varphi \in \mathcal{D}_{H_{k}} \backslash\{0\}\right\} .
$$

- Without loss of generality

- The complex lifted Fermi curve:

$$
\widehat{\mathcal{F}}:=\left\{k \in \mathbb{C}^{2} \mid H_{k} \varphi=0 \text { for some } \varphi \in \mathcal{D}_{H_{k}} \backslash\{0\}\right\} \text {. }
$$

Fermi curve

- The real lifted Fermi curve:

$$
\begin{aligned}
\widehat{\mathcal{F}}_{\lambda, \mathbb{R}} & :=\left\{k \in \mathbb{R}^{2} \mid E_{n}(k)=\lambda \quad \text { for some } n \geq 1\right\} \\
& =\left\{k \in \mathbb{R}^{2} \mid\left(H_{k}-\lambda\right) \varphi=0 \quad \text { for some } \varphi \in \mathcal{D}_{H_{k}} \backslash\{0\}\right\}
\end{aligned}
$$

- Without loss of generality

$$
A-\int A \rightarrow A, \quad V-\lambda \rightarrow V, \quad k \rightarrow k+\int A .
$$

- The complex lifted Fermi curve:

$$
\widehat{\mathcal{F}}:=\left\{k \in \mathbb{C}^{2} \mid H_{k} \varphi=0 \text { for some } \varphi \in \mathcal{D}_{H_{k}} \backslash\{0\}\right\} \text {. }
$$

Fermi curve

- The real lifted Fermi curve:

$$
\begin{aligned}
\widehat{\mathcal{F}}_{\lambda, \mathbb{R}} & :=\left\{k \in \mathbb{R}^{2} \mid E_{n}(k)=\lambda \quad \text { for some } n \geq 1\right\} \\
& =\left\{k \in \mathbb{R}^{2} \mid\left(H_{k}-\lambda\right) \varphi=0 \text { for some } \varphi \in \mathcal{D}_{H_{k}} \backslash\{0\}\right\}
\end{aligned}
$$

- Without loss of generality

$$
A-\int A \rightarrow A, \quad V-\lambda \rightarrow V, \quad k \rightarrow k+\int A
$$

- The complex lifted Fermi curve:

$$
\widehat{\mathcal{F}}:=\left\{k \in \mathbb{C}^{2} \mid H_{k} \varphi=0 \quad \text { for some } \varphi \in \mathcal{D}_{H_{k}} \backslash\{0\}\right\} .
$$

Fermi curve

- The real lifted Fermi curve:

$$
\begin{aligned}
\widehat{\mathcal{F}}_{\lambda, \mathbb{R}} & :=\left\{k \in \mathbb{R}^{2} \mid E_{n}(k)=\lambda \quad \text { for some } n \geq 1\right\} \\
& =\left\{k \in \mathbb{R}^{2} \mid\left(H_{k}-\lambda\right) \varphi=0 \quad \text { for some } \varphi \in \mathcal{D}_{H_{k}} \backslash\{0\}\right\}
\end{aligned}
$$

- Without loss of generality

$$
A-\int A \rightarrow A, \quad V-\lambda \rightarrow V, \quad k \rightarrow k+\int A
$$

- The complex lifted Fermi curve:

$$
\widehat{\mathcal{F}}:=\left\{k \in \mathbb{C}^{2} \mid H_{k} \varphi=0 \quad \text { for some } \varphi \in \mathcal{D}_{H_{k}} \backslash\{0\}\right\}
$$

Fermi curve: properties

The Fermi curve is:

1. Analytic:

$$
\widehat{\mathcal{F}}=\left\{k \in \mathbb{C}^{2} \mid F(k)=0\right\}
$$

where $F(k)$ is an analytic function on \mathbb{C}^{2}.
2. Periodic with respect to 「\#:

$$
\widehat{\mathcal{F}}+b=\widehat{\mathcal{F}} \quad \text { for all } b \in \Gamma^{\#} .
$$

3. Gauge invariant:
is invariant under $A \rightarrow A+\nabla \psi$.

Fermi curve: properties

The Fermi curve is:

1. Analytic:

$$
\widehat{\mathcal{F}}=\left\{k \in \mathbb{C}^{2} \mid F(k)=0\right\}
$$

where $F(k)$ is an analytic function on \mathbb{C}^{2}.
2. Periodic with respect to 「\#:

$$
\widehat{\mathcal{F}}+b=\widehat{\mathcal{F}} \quad \text { for all } b \in \Gamma^{\#} .
$$

3. Gauge invariant:
is invariant under

Fermi curve: properties

The Fermi curve is:

1. Analytic:

$$
\widehat{\mathcal{F}}=\left\{k \in \mathbb{C}^{2} \mid F(k)=0\right\}
$$

where $F(k)$ is an analytic function on \mathbb{C}^{2}.
2. Periodic with respect to 「\#:

$$
\widehat{\mathcal{F}}+b=\widehat{\mathcal{F}} \quad \text { for all } b \in \Gamma^{\#} .
$$

3. Gauge invariant:
$\widehat{\mathcal{F}}$ is invariant under $\quad A \rightarrow A+\nabla \Psi$.

The free Hamiltonian

- Set $A=0$ and $V=0$. Then

$$
\left\{e^{i b \cdot x} \mid b \in \Gamma^{\#}\right\}
$$

is a basis of $L^{2}\left(\mathbb{R}^{2} / \Gamma\right)$ of eigenfunctions of H_{k} :

where

$$
N_{b, \nu}(k):=\left(k_{1}+b_{1}\right)+i(-1)^{\nu}\left(k_{2}+b_{2}\right) .
$$

The free Hamiltonian

- Set $A=0$ and $V=0$. Then

$$
\left\{e^{i b \cdot x} \mid b \in \Gamma^{\#}\right\}
$$

is a basis of $L^{2}\left(\mathbb{R}^{2} / \Gamma\right)$ of eigenfunctions of H_{k} :

$$
H_{k} e^{i b \cdot x}=(i \nabla-k)^{2} e^{i b \cdot x}
$$

where

$$
N_{b, \nu}(k):=\left(k_{1}+b_{1}\right)+i(-1)^{\nu}\left(k_{2}+b_{2}\right) .
$$

The free Hamiltonian

- Set $A=0$ and $V=0$. Then

$$
\left\{e^{i b \cdot x} \mid b \in \Gamma^{\#}\right\}
$$

is a basis of $L^{2}\left(\mathbb{R}^{2} / \Gamma\right)$ of eigenfunctions of H_{k} :

$$
\begin{aligned}
H_{k} e^{i b \cdot x} & =(i \nabla-k)^{2} e^{i b \cdot x} \\
& =(-b-k)^{2} e^{i b \cdot x}
\end{aligned}
$$

where

The free Hamiltonian

- Set $A=0$ and $V=0$. Then

$$
\left\{e^{i b \cdot x} \mid b \in \Gamma^{\#}\right\}
$$

is a basis of $L^{2}\left(\mathbb{R}^{2} / \Gamma\right)$ of eigenfunctions of H_{k} :

$$
\begin{aligned}
H_{k} e^{i b \cdot x} & =(i \nabla-k)^{2} e^{i b \cdot x} \\
& =(-b-k)^{2} e^{i b \cdot x}=: N_{b}(k) e^{i b \cdot x}
\end{aligned}
$$

where

The free Hamiltonian

- Set $A=0$ and $V=0$. Then

$$
\left\{e^{i b \cdot x} \mid b \in \Gamma^{\#}\right\}
$$

is a basis of $L^{2}\left(\mathbb{R}^{2} / \Gamma\right)$ of eigenfunctions of H_{k} :

$$
\begin{aligned}
H_{k} e^{i b \cdot x} & =(i \nabla-k)^{2} e^{i b \cdot x} \\
& =(-b-k)^{2} e^{i b \cdot x}
\end{aligned}=: N_{b}(k) e^{i b \cdot x}\left(\begin{array}{c}
b, 1
\end{array}\right) N_{b, 2}(k) e^{i b \cdot x}
$$

where

The free Hamiltonian

- Set $A=0$ and $V=0$. Then

$$
\left\{e^{i b \cdot x} \mid b \in \Gamma^{\#}\right\}
$$

is a basis of $L^{2}\left(\mathbb{R}^{2} / \Gamma\right)$ of eigenfunctions of H_{k} :

$$
\begin{aligned}
H_{k} e^{i b \cdot x} & =(i \nabla-k)^{2} e^{i b \cdot x} \\
& =(-b-k)^{2} e^{i b \cdot x}
\end{aligned}=: N_{b}(k) e^{i b \cdot x}\left(\begin{array}{c}
b, 1
\end{array}\right) N_{b, 2}(k) e^{i b \cdot x}
$$

where

$$
N_{b, \nu}(k):=\left(k_{1}+b_{1}\right)+i(-1)^{\nu}\left(k_{2}+b_{2}\right)
$$

The free Fermi curve

- Define

$$
\begin{aligned}
\mathcal{N}_{b} & :=\left\{k \in \mathbb{C}^{2} \mid\left(k_{1}+b_{1}\right)^{2}+\left(k_{2}+b_{2}\right)^{2}=0\right\} \\
\mathcal{N}_{\nu}(b) & :=\left\{k \in \mathbb{C}^{2} \mid\left(k_{1}+b_{1}\right)+i(-1)^{\nu}\left(k_{2}+b_{2}\right)=0\right\}
\end{aligned}
$$

Hence, for $A=0$ and $V=0$,

$$
\begin{aligned}
\widehat{\mathcal{F}} & =\left\{k \in \mathbb{C}^{2} \mid N_{b}(k)=0 \text { for some } b \in \Gamma^{\#}\right\} \\
& =\bigcup_{b \in \Gamma \#} N_{b}=\bigcup_{\substack{b \in \Gamma^{\#} \\
\nu \in\{1,2\}}} \mathcal{N}_{\nu}(b)
\end{aligned}
$$

The free Fermi curve

- Define

$$
\begin{aligned}
\mathcal{N}_{b} & :=\left\{k \in \mathbb{C}^{2} \mid\left(k_{1}+b_{1}\right)^{2}+\left(k_{2}+b_{2}\right)^{2}=0\right\} \\
\mathcal{N}_{\nu}(b) & :=\left\{k \in \mathbb{C}^{2} \mid\left(k_{1}+b_{1}\right)+i(-1)^{\nu}\left(k_{2}+b_{2}\right)=0\right\}
\end{aligned}
$$

Hence, for $A=0$ and $V=0$,

$$
\widehat{\mathcal{F}}=\left\{k \in \mathbb{C}^{2} \mid N_{b}(k)=0 \quad \text { for some } b \in \Gamma^{\#}\right\}
$$

The free Fermi curve

- Define

$$
\begin{aligned}
\mathcal{N}_{b} & :=\left\{k \in \mathbb{C}^{2} \mid\left(k_{1}+b_{1}\right)^{2}+\left(k_{2}+b_{2}\right)^{2}=0\right\} \\
\mathcal{N}_{\nu}(b) & :=\left\{k \in \mathbb{C}^{2} \mid\left(k_{1}+b_{1}\right)+i(-1)^{\nu}\left(k_{2}+b_{2}\right)=0\right\}
\end{aligned}
$$

Hence, for $A=0$ and $V=0$,

$$
\begin{aligned}
\widehat{\mathcal{F}} & =\left\{k \in \mathbb{C}^{2} \mid N_{b}(k)=0 \quad \text { for some } b \in \Gamma^{\#}\right\} \\
& =\bigcup_{b \in \Gamma} \mathcal{N}_{b}=\bigcup_{b \in \Gamma} \mathcal{N}_{\nu}(b)
\end{aligned}
$$

The free Fermi curve

- Define

$$
\begin{aligned}
\mathcal{N}_{b} & :=\left\{k \in \mathbb{C}^{2} \mid\left(k_{1}+b_{1}\right)^{2}+\left(k_{2}+b_{2}\right)^{2}=0\right\} \\
\mathcal{N}_{\nu}(b) & :=\left\{k \in \mathbb{C}^{2} \mid\left(k_{1}+b_{1}\right)+i(-1)^{\nu}\left(k_{2}+b_{2}\right)=0\right\}
\end{aligned}
$$

Hence, for $A=0$ and $V=0$,

$$
\begin{aligned}
\widehat{\mathcal{F}} & =\left\{k \in \mathbb{C}^{2} \mid N_{b}(k)=0 \quad \text { for some } b \in \Gamma^{\#}\right\} \\
& =\bigcup_{b \in \Gamma^{\#}} \mathcal{N}_{b}=\bigcup_{\substack{b \in \Gamma^{\#} \\
\nu \in\{1,2\}}} \mathcal{N}_{\nu}(b)
\end{aligned}
$$

Sketch of the free Fermi curve (for $i k_{1}$ and k_{2} real)

Main results

- Let $2 \wedge$ be the length of the shortest b in $\Gamma^{\#}$.
- Fix $\varepsilon<\Lambda / 6$.
- Assume that A and V "are differentiable".
- Notation: $\widehat{\mathcal{F}} \equiv \widehat{\mathcal{F}}(A, V)$
"Theorem".
Suppose that $\|A\|_{L^{2}} \lesssim \varepsilon($ small $)$.
Then, outside of a compact set (asymptotically),
the curve $\widehat{\mathcal{F}}(A, V)$ is very close to $\widehat{\mathcal{F}}(0,0)$,
except that:

Main results

- Let $2 \wedge$ be the length of the shortest b in $\Gamma^{\#}$.
- Fix $\varepsilon<\Lambda / 6$.
- Assume that A and V "are differentiable".
- Notation: $\widehat{\mathcal{F}} \equiv \widehat{\mathcal{F}}(A, V)$

"Theorem".

Suppose that $\|A\|_{L^{2}} \lesssim \varepsilon($ small $)$.
Then, outside of a compact set (asymptotically),
the curve $\widehat{\mathcal{F}}(A, V)$ is very close to $\widehat{\mathcal{F}}(0,0)$,
except that:

Main results

- Let $2 \wedge$ be the length of the shortest b in $\Gamma^{\#}$.
- Fix $\varepsilon<\Lambda / 6$.
- Assume that A and V "are differentiable".
- Notation: $\widehat{\mathcal{F}} \equiv \hat{\mathcal{F}}(A, V)$

"Theorem".

Suppose that $\|A\|_{L^{2}} \lesssim \varepsilon$ (small).
Then, outside of a compact set (asymptotically), the curve $\widehat{\mathcal{F}}(A, V)$ is very close to $\widehat{\mathcal{F}}(0,0)$, except that:

Main results

- Let $2 \wedge$ be the length of the shortest b in $\Gamma^{\#}$.
- Fix $\varepsilon<\Lambda / 6$.
- Assume that A and V "are differentiable".
- Notation: $\widehat{\mathcal{F}} \equiv \widehat{\mathcal{F}}(A, V)$

"Theorem".

Suppose that $\|A\|_{L^{2}} \lesssim \varepsilon($ small $)$.
Then, outside of a compact set (asymptotically), the curve $\widehat{\mathcal{F}}(A, V)$ is very close to $\widehat{\mathcal{F}}(0,0)$, except that:

Main results

- Let $2 \wedge$ be the length of the shortest b in $\Gamma^{\#}$.
- $\operatorname{Fix} \varepsilon<\Lambda / 6$.
- Assume that A and V "are differentiable".
- Notation: $\widehat{\mathcal{F}} \equiv \widehat{\mathcal{F}}(A, V)$
"Theorem".
Suppose that $\|A\|_{L^{2}} \lesssim \varepsilon$ (small).
Then, outside of a compact set (asymptotically), the curve $\widehat{\mathcal{F}}(A, V)$ is very close to $\widehat{\mathcal{F}}(0,0)$, except that:

Main results

- Let $2 \wedge$ be the length of the shortest b in $\Gamma^{\#}$.
- Fix $\varepsilon<\Lambda / 6$.
- Assume that A and V "are differentiable".
- Notation: $\widehat{\mathcal{F}} \equiv \widehat{\mathcal{F}}(A, V)$
"Theorem".
Suppose that $\|A\|_{L^{2}} \lesssim \varepsilon$ (small).
Then, outside of a compact set (asymptotically),
the curve $\hat{F}(A, V)$ is very close to $\mathcal{F}(0,0)$, except that:

Main results

- Let $2 \wedge$ be the length of the shortest b in $\Gamma^{\#}$.
- Fix $\varepsilon<\Lambda / 6$.
- Assume that A and V "are differentiable".
- Notation: $\widehat{\mathcal{F}} \equiv \widehat{\mathcal{F}}(A, V)$
"Theorem".
Suppose that $\|A\|_{L^{2}} \lesssim \varepsilon$ (small).
Then, outside of a compact set (asymptotically), the curve $\widehat{\mathcal{F}}(A, V)$ is very close to $\widehat{\mathcal{F}}(0,0)$,

Main results

- Let $2 \wedge$ be the length of the shortest b in $\Gamma^{\#}$.
- Fix $\varepsilon<\Lambda / 6$.
- Assume that A and V "are differentiable".
- Notation: $\widehat{\mathcal{F}} \equiv \widehat{\mathcal{F}}(A, V)$
"Theorem".
Suppose that $\|A\|_{L^{2}} \lesssim \varepsilon$ (small).
Then, outside of a compact set (asymptotically), the curve $\widehat{\mathcal{F}}(A, V)$ is very close to $\widehat{\mathcal{F}}(0,0)$, except that:

Main results

can open up to

$$
z_{1} z_{2}=0
$$

$z_{1} z_{2}=$ const

Main results

and

$z_{1} z_{2}=0$

$$
z_{1} z_{2}=\mathrm{const}
$$

Remarks

- Generically all double points open up: 1-D complex manifold.

For $A=0$ proved by
\quad Feldman, Knörrer and Trubowitz (2003).

- The proof is perturbative. (We follow their strategy.)
- Large A ?

Some ideas... speculations...

Remarks

- Generically all double points open up: 1-D complex manifold.
- For $A=0$ proved by

Feldman, Knörrer and Trubowitz (2003).

- The proof is perturbative. (We follow their strategy.)
- Large A ?

Some ideas... speculations...

Remarks

- Generically all double points open up: 1-D complex manifold.
- For $A=0$ proved by Feldman, Knörrer and Trubowitz (2003).
- The proof is perturbative. (We follow their strategy.)
- Large A ?

Some ideas... speculations...

Remarks

- Generically all double points open up: 1-D complex manifold.
- For $A=0$ proved by Feldman, Knörrer and Trubowitz (2003).
- The proof is perturbative. (We follow their strategy.)
- Large A ?

Some ideas... speculations...

Idea of proof

- Write

$$
\begin{aligned}
H_{k} & =(i \nabla+A-k)^{2}+V \\
& =(i \nabla-k)^{2}+2 A \cdot(i \nabla-k)+q
\end{aligned}
$$

where

$$
q:=(i \nabla \cdot A)+A^{2}+V
$$

Idea of proof

- Then $k \in \widehat{\mathcal{F}}(A, V)$ if and only if

$$
\left[(i \nabla-k)^{2}+2 A \cdot(i \nabla-k)+q\right] \varphi=0
$$

for $\varphi \in L^{2}\left(\mathbb{R}^{2} / \Gamma\right)$ with $\varphi \neq 0$, or, equivalently,
where $\hat{f}(b)=\int_{\mathbb{R}^{2} / \Gamma} f(x) e^{-i b \cdot x} d x$.
(Recall $L^{2}\left(\mathbb{R}^{2} / \Gamma\right) \simeq I^{2}\left(\Gamma^{\#}\right)$.)

Idea of proof

- Then $k \in \widehat{\mathcal{F}}(A, V)$ if and only if

$$
\left[(i \nabla-k)^{2}+2 A \cdot(i \nabla-k)+q\right] \varphi=0
$$

for $\varphi \in L^{2}\left(\mathbb{R}^{2} / \Gamma\right)$ with $\varphi \neq 0$, or, equivalently,

$$
\left[N_{c}(k) \delta_{b, c}-2(c+k) \cdot \hat{A}(b-c)+\hat{q}(b-c)\right]_{b, c \in \Gamma \#}\left[\begin{array}{c}
\mid \\
\hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in \Gamma^{\#}}=0
$$

where $\hat{f}(b)=\int_{\mathbb{R}^{2} / \Gamma} f(x) e^{-i b \cdot x} d x$.
(Recall $L^{2}\left(\mathbb{R}^{2} / \Gamma\right) \simeq I^{2}\left(\Gamma^{\#}\right)$.)

Idea of proof

- ε-tubes about \mathcal{N}_{b} :

$$
\begin{aligned}
T_{b} & :=T_{1}(b) \cup T_{2}(b), \\
T_{\nu}(b) & :=\left\{k \in \mathbb{C}^{2}|\quad| N_{b, \nu}(k) \mid<\varepsilon\right\} .
\end{aligned}
$$

- Write

$$
k=u+i v \quad \text { with } \quad u, v \in \mathbb{R}^{2} .
$$

Then

Idea of proof

- ε-tubes about \mathcal{N}_{b} :

$$
\begin{aligned}
T_{b} & :=T_{1}(b) \cup T_{2}(b), \\
T_{\nu}(b) & :=\left\{k \in \mathbb{C}^{2}|\quad| N_{b, \nu}(k) \mid<\varepsilon\right\} .
\end{aligned}
$$

- Write

$$
k=u+i v \quad \text { with } \quad u, v \in \mathbb{R}^{2}
$$

Then

$$
k \notin T_{b} \quad \Longrightarrow \quad\left|N_{b}(k)\right| \geq \varepsilon|v|
$$

Idea of proof

- Let $G=\{0\}$ or $G=\{0, d\}$ with $0, d \in \Gamma^{\#}$.

We can split our equation:

Idea of proof

- Let $G=\{0\}$ or $G=\{0, d\}$ with $0, d \in \Gamma^{\#}$.

We can split our equation:

$$
\begin{aligned}
& {\left[N_{c}(k) \delta_{b, c}-2(c+k) \cdot \hat{A}(b-c)+\hat{q}(b-c)\right]_{\substack{b \in G \\
c \in \Gamma^{\#}}}\left[\begin{array}{c}
\mid \\
\hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in \Gamma \#}=0,} \\
& {\left[N_{c}(k) \delta_{b, c}-2(c+k) \cdot \hat{A}(b-c)+\hat{q}(b-c)\right]_{\substack{b \in \Gamma^{\#} \backslash G \\
c \in \Gamma^{\#}}}\left[\begin{array}{c}
\mid \\
\hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in \Gamma \#}=0 .}
\end{aligned}
$$

Idea of proof

- We can rewrite the second equation:

$$
\begin{gathered}
{\left[N_{c}(k) \delta_{b, c}-2(c+k) \cdot \hat{A}(b-c)+\hat{q}(b-c)\right]_{b, c \in \Gamma \# \backslash G}\left[\begin{array}{c}
\mid \\
\hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in \Gamma \# \backslash G}} \\
\quad=-[-2(c+k) \cdot \hat{A}(b-c)+\hat{q}(b-c)]_{\substack{b \in \Gamma \# \backslash G \\
c \in G}}\left[\begin{array}{c}
\mid \\
\hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in G}
\end{gathered}
$$

Idea of proof

- Rewriting again the second equation:

$$
\begin{aligned}
& \underbrace{\left[\delta_{b, c}-\frac{2(c+k)}{N_{c}(k)} \cdot \hat{A}(b-c)+\frac{\hat{q}(b-c)}{N_{c}(k)}\right]_{b, c \in \Gamma \# \backslash G}}_{=: R_{G^{\prime} G^{\prime}}}\left[\begin{array}{c}
N_{c}(k) \hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in \Gamma \# \backslash G} \\
& \quad=-[-2(c+k) \cdot \hat{A}(b-c)+\hat{q}(b-c)]_{\substack{b \in \Gamma \# \backslash G \\
c \in G}}\left[\begin{array}{c}
\mid \\
\hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in G}
\end{aligned}
$$

Idea of proof

- Rewriting again the second equation:

$$
\begin{aligned}
& \underbrace{\left[\delta_{b, c}-\frac{2(c+k)}{N_{c}(k)} \cdot \hat{A}(b-c)+\frac{\hat{q}(b-c)}{N_{c}(k)}\right]_{b, c \in \Gamma \# \backslash G}}_{=: R_{G^{\prime} G^{\prime}}}\left[\begin{array}{c}
N_{c}(k) \hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in \Gamma \# \backslash G} \\
& \quad=-[-2(c+k) \cdot \hat{A}(b-c)+\hat{q}(b-c)]_{\substack{b \in \Gamma \# \backslash G \\
c \in G}}\left[\begin{array}{c}
\mid \\
\hat{\varphi}(c) \\
\mid
\end{array}\right]_{c \in G}
\end{aligned}
$$

We can solve for $[\hat{\varphi}(c)]_{c \in \Gamma \# \backslash G}=-\left[\frac{\delta_{b, c}}{N_{c}(k)}\right] R_{G^{\prime} G^{\prime}}^{-1}[\cdots][\hat{\varphi}(c)]_{c \in G}$

Idea of proof

- Substituting in the first equation we conclude that it has a solution if and only if
$\operatorname{det}\left[N_{d^{\prime}}(k) \delta_{d^{\prime}, d^{\prime \prime}}+w_{d^{\prime}, d^{\prime \prime}}-\sum_{b, c \in G^{\prime}} \frac{w_{d^{\prime}, b}}{N_{b}(k)}\left(R_{G^{\prime} G^{\prime}}^{-1}\right)_{b, c} w_{c, d^{\prime \prime}}\right]_{d^{\prime}, d^{\prime \prime} \in G}=0$,
where

$$
w_{b, c}:=-2(c+k) \cdot \hat{A}(b-c)+\hat{q}(b-c)
$$

This is a $|G| \times|G|$ determinant.

Idea of proof

Hence we have local defining equations for $\widehat{\mathcal{F}}(A, V)$:

- Deformed planes ($G=\{0\}$):

$$
N_{0}(k)+D_{00}(k)=0 .
$$

- Handles ($G=\{0, d\}$):

$$
\left(N_{0}(k)+D_{00}(k)\right)\left(N_{d}(k)+D_{d d}(k)\right)=D_{0, d} D_{d, 0} .
$$

where

$$
\begin{aligned}
& D_{d^{\prime}, d^{\prime \prime}}(k):=B_{11}^{d^{\prime} d^{\prime \prime}} k_{1}^{2}+B_{22}^{d^{\prime} d^{\prime \prime}} k_{2}^{2}+\left(B_{12}^{d^{\prime} d^{\prime \prime}}+B_{21}^{d^{\prime} d^{\prime \prime}}\right) k_{1} k_{2} \\
&+C_{1}^{\prime^{\prime} d^{\prime \prime}} k_{1}+C_{2}^{d^{\prime} d^{\prime \prime}} k_{2}+C_{0}^{d^{\prime} d^{\prime \prime}} .
\end{aligned}
$$

Idea of proof

- Linear change of variables:

$$
\left(k_{1}, k_{2}\right) \mapsto(w, z),
$$

where w is "small" and z is "large".

- Asymptotics for the coefficients:

Idea of proof

- Linear change of variables:

$$
\left(k_{1}, k_{2}\right) \mapsto(w, z)
$$

where w is "small" and z is "large".

- Asymptotics for the coefficients:

$$
\begin{aligned}
\Phi_{d^{\prime}, d^{\prime \prime}}(k):= & \sum_{b, c \in G^{\prime}} \frac{f\left(d^{\prime}-b\right)}{N_{b}(k)}\left(R_{G^{\prime} G^{\prime}}^{-1}\right)_{b, c} g\left(c-d^{\prime \prime}\right) \\
& =O(1)+O\left(\frac{1}{z}\right)+O\left(\frac{1}{z^{2}}\right) .
\end{aligned}
$$

Idea of proof

- Asymptotics for the derivatives:

$$
\frac{\partial^{n+m}}{\partial z^{m} \partial w^{n}} \Phi_{d^{\prime}, d^{\prime \prime}}(k)=O(1)+O\left(\frac{1}{z}\right)+O\left(\frac{1}{z^{2}}\right)
$$

- Proof: Chain rule; Leibniz rule; $\frac{1}{1-X}=1+X+X^{2}+$.
- Implicit function theorem.
- Quantitative Morse lemma.

Acknowledgements: I would like to thank Feldman and UBC.

Idea of proof

- Asymptotics for the derivatives:

$$
\frac{\partial^{n+m}}{\partial z^{m} \partial w^{n}} \Phi_{d^{\prime}, d^{\prime \prime}}(k)=O(1)+O\left(\frac{1}{z}\right)+O\left(\frac{1}{z^{2}}\right)
$$

- Proof: Chain rule; Leibniz rule; $\frac{1}{1-X}=1+X+X^{2}+\cdots$
- Implicit function theorem.
- Quantitative Morse lemma.

Idea of proof

- Asymptotics for the derivatives:

$$
\frac{\partial^{n+m}}{\partial z^{m} \partial w^{n}} \Phi_{d^{\prime}, d^{\prime \prime}}(k)=O(1)+O\left(\frac{1}{z}\right)+O\left(\frac{1}{z^{2}}\right)
$$

- Proof: Chain rule; Leibniz rule; $\frac{1}{1-X}=1+X+X^{2}+\cdots$
- Implicit function theorem.
- Quantitative Morse lemma.

Idea of proof

- Asymptotics for the derivatives:

$$
\frac{\partial^{n+m}}{\partial z^{m} \partial w^{n}} \Phi_{d^{\prime}, d^{\prime \prime}}(k)=O(1)+O\left(\frac{1}{z}\right)+O\left(\frac{1}{z^{2}}\right)
$$

- Proof: Chain rule; Leibniz rule; $\frac{1}{1-X}=1+X+X^{2}+\cdots$
- Implicit function theorem.
- Quantitative Morse lemma.

Idea of proof

- Asymptotics for the derivatives:

$$
\frac{\partial^{n+m}}{\partial z^{m} \partial w^{n}} \Phi_{d^{\prime}, d^{\prime \prime}}(k)=O(1)+O\left(\frac{1}{z}\right)+O\left(\frac{1}{z^{2}}\right)
$$

- Proof: Chain rule; Leibniz rule; $\frac{1}{1-X}=1+X+X^{2}+\cdots$
- Implicit function theorem.
- Quantitative Morse lemma.

Acknowledgements: I would like to thank Feldman and UBC.

