Quantum dynamics of a particle constrained to lie on a surface

Gustavo de Oliveira ${ }^{1}$

SISSA - Trieste

January 2016
${ }^{1}$ Work done under support of FAPESP.

In this talk we will

- Recall the Schrödinger equation on \mathbb{R}^{3}.
- Present a Schrödinger-type equation on a surface of \mathbb{R}^{3}.
- Relate the solution to the latter to the solution to the former.

Outline

1. Introduction
2. Main result
3. Sketch of proof

Quantum mechanics for a particle in \mathbb{R}^{3}

Wave function

$$
\psi(x, t) \in \mathbb{C}, \quad x \in \mathbb{R}^{3}, \quad t \in \mathbb{R}
$$

- Square-integrable:

$$
\psi(\cdot, t) \in L^{2}\left(\mathbb{R}^{3}, d x\right)
$$

- Normalized:

$$
\int_{\mathbb{R}^{3}}|\psi(x, t)|^{2} d x=1
$$

Quantum dynamics of a particle in \mathbb{R}^{3}

Schrödinger equation

$$
\left\{\begin{array}{l}
i \partial_{t} \psi=H \psi \\
\left.\psi\right|_{t=0}=\psi_{0}
\end{array} \quad \Longleftrightarrow \quad \psi(\cdot, t)=e^{-i t H} \psi_{0}\right.
$$

- Hamiltonian with $A(x) \in \mathbb{R}^{3}$ and $V(x) \in \mathbb{R}$:

$$
\begin{aligned}
H \psi & =\left[(i \nabla+A)^{2}+V\right] \psi \\
& =i \operatorname{div}(i \operatorname{grad}(\psi)+A \psi)+\langle A, i \operatorname{grad}(\psi)+A \psi\rangle+V \psi
\end{aligned}
$$

Calculus in a manifold S^{k}

- Coordinates:

$$
x_{1}(p), \ldots, x_{k}(p) \text { for } p \in S^{k}
$$

- Metric:

$$
\left[g_{i j}\right], \quad\left[g^{i j}\right]=\left[g_{i j}\right]^{-1}, \quad g=\operatorname{det}\left[g_{i j}\right] .
$$

- Gradient:

$$
(\operatorname{grad} f)^{i}=g^{i j} \frac{\partial}{\partial x_{j}} f .
$$

- Divergent:

$$
\operatorname{div} Y=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x_{j}}\left(\sqrt{g} Y^{j}\right)
$$

What if the particle is constrained to lie on Σ ?

- Suppose

$$
x \in \Sigma, \quad \text { surface } \Sigma \subset \mathbb{R}^{3}
$$

What is the equation for $\psi(x, t)$ on Σ ?

What if the particle is constrained to lie on Σ ?

- Suppose

$$
x \in \Sigma, \quad \text { surface } \Sigma \subset \mathbb{R}^{3} .
$$

What is the equation for $\psi(x, t)$ on Σ ?

- Natural candidate:

Replace $\quad \mathbb{R}^{3}$ and $\langle\cdot, \cdot\rangle \quad$ by $\quad \Sigma$ and $\left.\langle\cdot, \cdot\rangle\right|_{\Sigma}$.
On Σ we have:

$$
L^{2}(\Sigma, \text { dvol }), \quad \text { div, grad, } \quad A, \quad V, \quad H .
$$

Equation:

$$
\left\{\begin{array}{l}
i \partial_{t} \psi=H \psi \\
\left.\psi\right|_{t=0}=\psi_{0, \Sigma}
\end{array} \quad \Longleftrightarrow \quad \psi(\cdot, t)=e^{-i t H} \psi_{0, \Sigma}\right.
$$

Is this the right equation on Σ ?

- The solution of this equation on Σ must agree with Schrödinger on \mathbb{R}^{3}.

Is this the right equation on Σ ?

- The solution of this equation on Σ must agree with Schrödinger on \mathbb{R}^{3}.
- How do we check?
- $\ln \mathbb{R}^{3}$, consider

$$
H_{\lambda}=H+\lambda^{4} W \quad \text { on } \quad L^{2}\left(\mathbb{R}^{3}\right)
$$

with

$$
\text { large } \lambda \in \mathbb{R},\left.\quad W\right|_{\Sigma}=0,\left.\quad W\right|_{\mathbb{R}^{3} \backslash \Sigma}>0
$$

The potential $\lambda^{4} W$ traps the particle near Σ.

We want to compare solutions

- Is it true that

$$
\underbrace{e^{-i t H_{0, \Sigma}} \psi_{0, \Sigma}}_{\text {candidate }} \simeq \underbrace{e^{-i t H_{\lambda}} \psi_{0, \lambda}}_{\text {Schrödinger }} \quad \text { as } \quad \lambda \rightarrow \infty
$$

where $\psi_{0, \lambda}$ is supported near Σ ?

We want to compare solutions

- Is it true that

$$
\underbrace{e^{-i t H} \psi_{0, \Sigma}}_{\text {candidate }} \simeq \underbrace{e^{-i t H_{\lambda}} \psi_{0, \lambda}}_{\text {Schrödinger }} \quad \text { as } \quad \lambda \rightarrow \infty
$$

where $\psi_{0, \lambda}$ is supported near Σ ?

- No. But if replace H on $L^{2}(\Sigma)$ by

$$
H_{\Sigma}=H+K \quad \text { on } L^{2}(\Sigma),
$$

then yes.

We want to compare solutions

- Is it true that

$$
\underbrace{e^{-i t H} \psi_{0, \Sigma}}_{\text {candidate }} \simeq \underbrace{e^{-i t H_{\lambda}} \psi_{0, \lambda}}_{\text {Schrödinger }} \quad \text { as } \quad \lambda \rightarrow \infty
$$

where $\psi_{0, \lambda}$ is supported near Σ ?

- No. But if replace H on $L^{2}(\Sigma)$ by

$$
H_{\Sigma}=H+K \quad \text { on } L^{2}(\Sigma)
$$

then yes.

$$
\begin{aligned}
K=s-h^{2} & \equiv \text { geometric potential } \\
s & \equiv \text { Gaussian curvature } \\
h & \equiv \text { mean curvature (not intrinsic) } .
\end{aligned}
$$

s, h, K are functions of $\sigma \in \Sigma$.

Examples

- Sphere of radius r :

$$
s=\frac{1}{r^{2}}, \quad h=\frac{1}{r}, \quad K=0 .
$$

- Torus:

$$
K \neq 0
$$

Motivation

- Effective evolution equations:

One-particle system embedded in a larger system.

- Lab applications (physics literature).
- Comparison to classical dynamics.

Previous work (among others)

Physics

- da Costa, Phys. Rev. A, (1981). Others...
- Ferrari and Cuoghi, Phys. Rev. Lett. (2009).

Math-phys

- Froese and Herbst, Comm. Math. Phys. (2001).
- Dell'Antonio and Tenuta (2004) (semiclassics).
- Wachsmuth and Teufel (2009) (adiabatic).

Our contribution

- More general W.
- Magnetic potential A.
- H_{Σ} doesn't depend on $A_{\perp \Sigma}$.

Continuing... We will use

Normal bundle

$$
\begin{gathered}
N \Sigma=\left\{(\sigma, n) \mid \sigma \in \Sigma, n \in N_{\sigma} \Sigma\right\}, \\
N \Sigma_{\delta}=\{(\sigma, n)| | n \mid<\delta\} .
\end{gathered}
$$

Continuing... We will use

Normal bundle

$$
\begin{gathered}
N \Sigma=\left\{(\sigma, n) \mid \sigma \in \Sigma, n \in N_{\sigma} \Sigma\right\}, \\
N \Sigma_{\delta}=\{(\sigma, n)| | n \mid<\delta\} .
\end{gathered}
$$

Change of variables

$$
\begin{gathered}
E: N \Sigma \rightarrow \mathbb{R}^{3} \\
E(\sigma, n)=\sigma+n
\end{gathered}
$$

$U_{\delta} \equiv$ tubular neighborhood of Σ in \mathbb{R}^{3},
$E: N \Sigma_{\delta} \rightarrow U_{\delta} \quad$ is a diffeomorphism.

Rewriting the problem

We want to study

$$
e^{-i t H_{\lambda}} \psi_{0, \lambda} \quad \text { on } \quad L^{2}\left(\mathbb{R}^{3}\right) \quad \text { near } \Sigma \quad \text { (Euclidean metric). }
$$

Rewriting the problem

We want to study

$$
e^{-i t H_{\lambda}} \psi_{0, \lambda} \text { on } L^{2}\left(\mathbb{R}^{3}\right) \text { near } \Sigma \quad \text { (Euclidean metric). }
$$

We do

Restrict to $L_{0}^{2}\left(U_{\delta}\right)$
Change variables to $L^{2}\left(N \Sigma_{\delta}\right)$ Extend to $L^{2}(N \Sigma)$

Error $O\left(\lambda^{-1}\right)$
No error
Error $O\left(\lambda^{-1}\right)$

Rewriting the problem

We want to study

$$
e^{-i t H_{\lambda}} \psi_{0, \lambda} \text { on } L^{2}\left(\mathbb{R}^{3}\right) \text { near } \Sigma \quad \text { (Euclidean metric). }
$$

We do

$$
\begin{array}{ll}
\text { Restrict to } L_{0}^{2}\left(U_{\delta}\right) & \text { Error } O\left(\lambda^{-1}\right) \\
\text { Change variables to } L^{2}\left(N \Sigma_{\delta}\right) & \text { No error } \\
\text { Extend to } L^{2}(N \Sigma) & \text { Error } O\left(\lambda^{-1}\right)
\end{array}
$$

We end up with

$$
\left.e^{-i t H_{\lambda}} \psi_{0, \lambda} \quad \text { on } \quad L^{2}(N \Sigma) \quad \text { (metric } g_{N \Sigma}\right)
$$

Decomposition of velocities

Tangent space of $N \Sigma$ at (σ, n)

$$
T_{\sigma, n} N \Sigma .
$$

Horizontal and vertical components of $T_{\sigma, n} N \Sigma$

$$
\begin{aligned}
T_{\sigma, n} N \Sigma & \simeq\left(T_{\sigma, n} N \Sigma\right)_{H} \oplus\left(T_{\sigma, n} N \Sigma\right)_{V}, \\
(X, Y) & =P_{H}(X, Y)+P_{V}(X, Y) .
\end{aligned}
$$

$$
\left\langle\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)\right\rangle_{N \Sigma_{\delta}}=\left\langle X_{1}+Y_{1}, X_{2}+Y_{2}\right\rangle_{\mathbb{R}^{3}} .
$$

Gauge transformation

Function γ on $\boldsymbol{N} \Sigma$. Unitary transformation:

$$
\begin{gathered}
S_{\gamma}=e^{i \gamma} \text { on } L^{2}(N \Sigma), \\
S_{\gamma}^{*} H_{\lambda} S_{\gamma}, \\
A \rightsquigarrow A-\operatorname{grad}(\gamma) .
\end{gathered}
$$

Proposition

$$
\begin{aligned}
\left.P_{H}(A-\operatorname{grad}(\gamma))\right|_{\Sigma} & =P_{H} A, \\
P_{V}(A-\operatorname{grad}(\gamma)) & =0 .
\end{aligned}
$$

Gauge transformation

Function γ on $\boldsymbol{N} \Sigma$. Unitary transformation:

$$
\begin{gathered}
S_{\gamma}=e^{i \gamma} \text { on } L^{2}(N \Sigma), \\
S_{\gamma}^{*} H_{\lambda} S_{\gamma}, \\
A \rightsquigarrow A-\operatorname{grad}(\gamma) .
\end{gathered}
$$

Proposition

$$
\begin{aligned}
\left.P_{H}(A-\operatorname{grad}(\gamma))\right|_{\Sigma} & =P_{H} A, \\
P_{V}(A-\operatorname{grad}(\gamma)) & =0 .
\end{aligned}
$$

Proof:

$$
\gamma(x, y)=\int_{0}^{y} A_{3}(x, s) d s
$$

does the job in each chart. Check that works globally.

Dilation in the normal directions

Unitary transformation:

$$
\begin{aligned}
U_{\lambda}: L^{2}\left(N \Sigma, \mathrm{dvol}_{N \Sigma}\right) & \rightarrow L^{2}(N \Sigma, \mathrm{dvol}) \\
\left(U_{\lambda} \psi\right)(\sigma, n) & =\sqrt{\lambda} m(\sigma, n) \psi(\sigma, \lambda n)
\end{aligned}
$$

Ignore dvol $_{N \Sigma}$ and $m(\sigma, n)>0$ for the moment.

Dilation in the normal directions

Unitary transformation:

$$
\begin{aligned}
U_{\lambda}: L^{2}\left(N \Sigma, \mathrm{dvol}_{N \Sigma}\right) & \rightarrow L^{2}(N \Sigma, \mathrm{dvol}) \\
\left(U_{\lambda} \psi\right)(\sigma, n) & =\sqrt{\lambda} m(\sigma, n) \psi(\sigma, \lambda n)
\end{aligned}
$$

Ignore dvol $_{N \Sigma}$ and $m(\sigma, n)>0$ for the moment.
Initial data

$$
e^{-i t H_{\lambda}} \psi_{0, \lambda} \quad \text { on } \quad L^{2}(N \Sigma, \text { dvol }), \quad \psi_{0, \lambda}=S_{\gamma} U_{\lambda} \psi_{0}
$$

$\psi_{0, \lambda}$ is squeezed towards Σ.

Plot of $\psi(\sigma, \cdot)$ (blue) and $\left(U_{\lambda} \psi\right)(\sigma, \cdot)$ (red)

Putting all together

We arrive at

$$
e^{-i t L_{\lambda}} \psi_{0} \quad \text { on } \quad L^{2}\left(N \Sigma, \mathrm{dvol}_{N \Sigma}\right)
$$

with

$$
L_{\lambda}=U_{\lambda}^{*} S_{\gamma}^{*} H_{\lambda} S_{\gamma} U_{\lambda}
$$

Large λ expansion

Local coordinates

$$
\begin{array}{cl}
\Sigma: & x(\sigma) \\
N \Sigma: & \left\{\begin{array}{l}
x(\sigma, n)=x(\sigma) \\
y(\sigma, n)=\langle\nu(\sigma), n\rangle
\end{array}\right. \\
T N \Sigma: & \partial / \partial x, \partial / \partial y
\end{array}
$$

Large λ expansion

Local coordinates

$$
\begin{aligned}
\Sigma: & x(\sigma) \\
N \Sigma: & \left\{\begin{array}{l}
x(\sigma, n)=x(\sigma) \\
y(\sigma, n)=\langle\nu(\sigma), n\rangle
\end{array}\right. \\
T N \Sigma: & \partial / \partial x, \partial / \partial y
\end{aligned}
$$

Expand the metric in $y \lambda^{-1}$

$$
g_{N \Sigma_{\delta}}\left(x, y \lambda^{-1}\right)=\left(\begin{array}{cc}
G_{\Sigma}(x)\left(I-y \lambda^{-1} M(x)\right)_{2 \times 2} & 0 \\
0 & 1
\end{array}\right)_{3 \times 3}
$$

Hamiltonians

Hypothesis and notation

- A, V, W smooth functions of (σ, n).
- Set $\mathbb{A}(\sigma)=P_{H} A(\sigma, 0)$ and $\mathbb{V}(\sigma)=V(\sigma, 0)$.

Hamiltonians

Hypothesis and notation

- A, V, W smooth functions of (σ, n).
- Set $\mathbb{A}(\sigma)=P_{H} A(\sigma, 0)$ and $\mathbb{V}(\sigma)=V(\sigma, 0)$.

Expansion for L_{λ}

$$
L_{\lambda}=H_{\Sigma}+\lambda^{2} H_{O, \lambda}+O\left(\lambda^{-1}\right)
$$

Hamiltonian on Σ :
$H_{\Sigma} \psi=i \operatorname{div}_{\Sigma}\left(i \operatorname{grad}_{\Sigma}(\psi)+\mathbb{A} \psi\right)+\left\langle\mathbb{A}, i \operatorname{grad}_{\Sigma}(\psi)+\mathbb{A} \psi\right\rangle_{\Sigma}+(\mathbb{V}+K) \psi$.
Oscillator in the normal directions:

$$
H_{O, \lambda} \psi=-\Delta_{n} \psi+(\langle n, B n\rangle_{\mathbb{R}^{3}}+\underbrace{O\left(\lambda^{-1}\right)}_{\text {will not depend on } \sigma}) \psi .
$$

Main result

Theorem (J. Math. Phys. (2014))

- W has local minimum at Σ.
- $\partial_{\sigma} W(\sigma, n)=O\left(|n|^{5}\right)$ as $|n| \rightarrow 0$.
- $W(\sigma, n) \geq c|n|^{2}$.
- $g_{N \Sigma}$ complete metric.

Then for any $\psi_{0}, T>0$, and large λ :

$$
\sup _{t \in[0, T]}\left\|e^{-i t L_{\lambda}} \psi_{0}-e^{-i t\left(H_{\Sigma}+\lambda^{2} H_{0, \lambda}\right)} \psi_{0}\right\| \leq \frac{C}{\sqrt{\lambda}} .
$$

Main result

Theorem (J. Math. Phys. (2014))

- W has local minimum at Σ.
- $\partial_{\sigma} W(\sigma, n)=O\left(|n|^{5}\right)$ as $|n| \rightarrow 0$.
- $W(\sigma, n) \geq c|n|^{2}$.
- $g_{N \Sigma}$ complete metric.

Then for any $\psi_{0}, T>0$, and large λ :

$$
\sup _{t \in[0, T]}\left\|e^{-i t L_{\lambda}} \psi_{0}-e^{-i t\left(H_{\Sigma}+\lambda^{2} H_{0, \lambda}\right)} \psi_{0}\right\| \leq \frac{C}{\sqrt{\lambda}}
$$

Remarks

- Neither orbits converge. Only their difference.
- Implies a statement on \mathbb{R}^{3}.

Interpretation

Since

$$
\begin{gathered}
L^{2}\left(N \Sigma, \operatorname{dvol}_{N \Sigma}\right)=L^{2}\left(\Sigma, \mathrm{dvol}^{2}\right) \otimes L^{2}(\mathbb{R}, d y) \\
{\left[H_{\Sigma}, H_{O, \lambda}\right]=0}
\end{gathered}
$$

Interpretation

Since

$$
\begin{gathered}
L^{2}\left(N \Sigma, \operatorname{dvol}_{N \Sigma}\right)=L^{2}(\Sigma, \operatorname{dvol}) \otimes L^{2}(\mathbb{R}, d y) \\
{\left[H_{\Sigma}, H_{O, \lambda}\right]=0}
\end{gathered}
$$

we have

$$
\begin{aligned}
H_{\Sigma} & =h_{\Sigma} \otimes I \\
H_{O, \lambda} & =I \otimes h_{O, \lambda},
\end{aligned}
$$

Interpretation

Since

$$
\begin{gathered}
L^{2}\left(N \Sigma, \operatorname{dvol}_{N \Sigma}\right)=L^{2}(\Sigma, \text { dvol }) \otimes L^{2}(\mathbb{R}, d y) \\
{\left[H_{\Sigma}, H_{O, \lambda}\right]=0}
\end{gathered}
$$

we have

$$
\begin{aligned}
H_{\Sigma} & =h_{\Sigma} \otimes I \\
H_{O, \lambda} & =I \otimes h_{O, \lambda},
\end{aligned}
$$

and

$$
\begin{aligned}
\exp \left(-i t\left(H_{\Sigma}+\lambda^{2} H_{O, \lambda}\right)\right) & =\exp \left(-i t H_{\Sigma}\right) \exp \left(-i t \lambda^{2} H_{O, \lambda}\right) \\
& =\exp \left(-i t h_{\Sigma}\right) \otimes \exp \left(-i t \lambda^{2} h_{O, \lambda}\right)
\end{aligned}
$$

Motion on Σ superposed by normal oscillations.

Sketch of proof

- Energy cutoff:
$E_{<}$equals 1 if $\left\langle\psi, L_{\lambda} \psi\right\rangle<\mu \lambda^{2}$ and 0 otherwise.
- $|n|$ cutoff:

$$
N_{<} \text {equals } 1 \text { if }|n|<\delta \lambda \text { and } 0 \text { otherwise. }
$$

- Partition of unity for Σ :

$$
\left\{\chi_{j}\right\} .
$$

- Resolution of identity:

$$
\begin{aligned}
1 & =1 \cdot 1 \cdot 1 \\
& =\left[\sum_{j=1}^{m} \chi_{j}(\sigma)^{2}\right] \cdot\left[N_{<}+N_{\geq}\right] \cdot\left[E_{<}+E_{\geq}\right] \\
& =\chi_{1} \cdot N_{<} \cdot E_{<}+\text {Reminder. }
\end{aligned}
$$

We want to estimate

Notation: $L_{0, \lambda}=H_{\Sigma}+\lambda^{2} H_{O, \lambda}$.

$$
\begin{aligned}
& \left\|e^{-i t L_{\lambda}} \psi_{0}-e^{-i t L_{0, \lambda}} \psi_{0}\right\|^{2} \\
& \leq\left|\int_{0}^{t} d s \frac{d}{d s}\left\langle e^{-i s L_{\lambda}} \psi_{0}, 1 \cdot e^{-i s L_{0, \lambda}} \psi_{0}\right\rangle\right| \\
& \leq C t \sup _{s}\langle\chi_{1} E_{<} e^{-i s L_{\lambda}} \psi_{0}, \underbrace{\left[L_{0, \lambda}, N_{<}\right]}_{\sim\left\{\partial_{y} N_{<}\right\} D_{y}}+N_{<}(\underbrace{L_{\lambda}-L_{0, \lambda}}_{\sim D_{x}^{*} D_{x}}) e^{-i s L_{0, \lambda}} \psi_{0}\rangle \\
& \quad+O\left(\lambda^{-1}\right)
\end{aligned}
$$

We want to estimate

Notation: $L_{0, \lambda}=H_{\Sigma}+\lambda^{2} H_{O, \lambda}$.

$$
\begin{aligned}
& \left\|e^{-i t L_{\lambda}} \psi_{0}-e^{-i t L_{0, \lambda}} \psi_{0}\right\|^{2} \\
& \leq\left|\int_{0}^{t} d s \frac{d}{d s}\left\langle e^{-i s L_{\lambda}} \psi_{0}, 1 \cdot e^{-i s L_{0, \lambda}} \psi_{0}\right\rangle\right| \\
& \leq C t \sup _{s}\langle\chi_{1} E_{<} e^{-i s L_{\lambda}} \psi_{0}, \underbrace{\left[L_{0, \lambda}, N_{<}\right]}_{\sim\left\{\partial_{y} N_{<}\right\} D_{y}}+N_{<}(\underbrace{L_{\lambda}-L_{0, \lambda}}_{\sim D_{x}^{*} D_{x}}) e^{-i s L_{0, \lambda}} \psi_{0}\rangle \\
& \quad+O\left(\lambda^{-1}\right)
\end{aligned}
$$

Using Cauchy-Schwarz, we reduce the problem to

$$
\begin{aligned}
& \lambda^{2}\left\|\left(\chi_{1} N_{<} E_{<}\right)\left\{\partial_{y} N_{<}\right\} D_{y} e^{-i s L_{0, \lambda}} \psi_{0}\right\| \leq C \lambda^{-1} \quad \text { (Energy bounds). } \\
& \|\left(\chi_{1} N_{<} E_{<}\right) \underbrace{D_{x} e^{-i s L_{0, \lambda}}}_{\left[D_{x}, W\right]} \psi_{0}\| \leq C \lambda^{-1 / 2} \quad \text { (Propagation bounds). }
\end{aligned}
$$

Appendix

Energy bounds

Schematically
We have
$D_{x}^{*} D_{x}+V(x, y)+K(x, y)+\lambda^{2}\left(D_{y}^{*} D_{y}+\lambda^{2} W\left(x, y \lambda^{-1}\right)\right)=L_{\lambda} \leq \lambda^{2} \mu$.
Use conservation of expected value of energy and positivity. We obtain
$\left(\lambda^{-1} D_{x}^{*}\right)^{\alpha}\left(\lambda^{-1} D_{x}\right)^{\alpha}+\left(D_{y}^{*}\right)^{p} D_{y}^{p}+\left(\lambda^{2} W\left(x, y \lambda^{-1}\right)\right)^{\prime} \leq C\left(\lambda^{-2} L_{\lambda}\right)^{I+1}$, where $|\alpha|+p \leq 2$ and $I \geq 1$.

Propagation bounds

Let

$$
f(t) \equiv \text { expected value of } D_{x}^{*} D_{x} \text { on } e^{-i t L_{\lambda}} \psi_{0}
$$

Use:

- Gronwall's inequality:

$$
\frac{d}{d t} f(t) \leq C f(t), \quad f(0) \leq C \quad \Longrightarrow \quad \sup _{t} f(t) \leq C
$$

- Energy bounds.

Thank you for your attention.

