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In this talk we will

» Recall the Schrédinger equation on R3.
» Present a Schrodinger-type equation on a surface of R3.

» Relate the solution to the latter to the solution to the former.



Outline

1. Introduction
2. Main result
3. Sketch of proof



Quantum mechanics for a particle in R3

Wave function

Y(x,t) € C, x € RS, t € R.

» Square-integrable:
Y(-, t) € L2(R3, dx).

» Normalized:

[, 100 de = 1.
R3



Quantum dynamics of a particle in R3

Schrédinger equation

{iat'(/) = Hy
Y]e=0 = tho
» Hamiltonian with A(x) € R3 and V(x) € R:

Hy = [(iV + A)? + V]¢
= idiv(igrad(¢) + AY) + (A, i grad(v) + Ay) + Vap.



Calculus in a manifold S*

» Coordinates:
xi(p);-- -, xx(p) for pe Sk
> Metric:
lgil,  [8"1=1lgi]™!, &= det[gy].
» Gradient: o
df) =gl —f.

(grad ) = 8"5

» Divergent:
divy = 7i(\/§ 7).

V8 0%



What if the particle is constrained to lie on 27

» Suppose
X €L, surface ¥ C R3.

What is the equation for ¢(x,t) on X 7



What if the particle is constrained to lie on 27

» Suppose
X €L, surface ¥ C R3.

What is the equation for ¢(x,t) on X 7

» Natural candidate:
Replace R3 and (-,-) by Y and (-, )|x.
On X we have:
[2(X,dvol), div, grad, A, V, H.
Equation:

{iat@/) = Hy
Yli—0 = Yo ¥

= (-, t)=e M.



Is this the right equation on 2.7

» The solution of this equation on ¥ must agree with
Schrédinger on R3.



Is this the right equation on 2.7

» The solution of this equation on ¥ must agree with
Schrédinger on R3.

» How do we check?

» In R3, consider
Hy=H+ MW on [*(R3)
with
large A € R, W|s =0, Wigs\x > 0.

The potential A*W traps the particle near X.



We want to compare solutions
> Is it true that
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We want to compare solutions
> Is it true that

e_"tHwOI ~ e_"tkaOA as A — o0,
—— ~———

candidate Schrédinger

where 1)  is supported near >?
» No. But if replace H on L%(X) by

Hy = H+ K on [*(Y),
then yes.

K=s—h= geometric potential,
s = Gaussian curvature,

h = mean curvature (not intrinsic).

s, h, K are functions of o0 € X.



Examples

» Sphere of radius r:

» Torus:



Motivation

» Effective evolution equations:
One-particle system embedded in a larger system.
» Lab applications (physics literature).

» Comparison to classical dynamics.



Previous work (among others)
Physics

» da Costa, Phys. Rev. A, (1981). Others...
» Ferrari and Cuoghi, Phys. Rev. Lett. (2009).

Math-phys

» Froese and Herbst, Comm. Math. Phys. (2001).
» Dell'Antonio and Tenuta (2004) (semiclassics).
» Wachsmuth and Teufel (2009) (adiabatic).

Our contribution

» More general W.
» Magnetic potential A.
» Hy doesn't depend on A 5.



Continuing... We will use

Normal bundle

NE ={(0.n) | 0 € X, ne N,X},
NEs = {(o,n) | |n| < 3}.



Continuing... We will use

Normal bundle

NE ={(0.n) | 0 € X, ne N,X},
NEs = {(o,n) | |n| < 3}.

Change of variables

E:NE — R3,
E(o,n) =0+ n.

Us = tubular neighborhood of ¥ in R3,
E: NX; — Us is a diffeomorphism.
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Rewriting the problem

We want to study

e_itH*lbo,A on L2(R3) near * (Euclidean metric).

We do

Restrict to L3(Us) Error O(A™1)
Change variables to L2(NX;) No error
Extend to L?(NX) Error O(A™1)



Rewriting the problem

We want to study

e ™o on L[A(R3) near X (Euclidean metric).
We do
Restrict to L3(Us) Error O(A™1)
Change variables to L2(NX;) No error
Extend to L?(NX) Error O(A™1)

We end up with

eiitH/\i/Jo’)\ on LZ(NZ) (metricgNz).



Decomposition of velocities

Tangent space of NX at (o, n)
TonNE.

Horizontal and vertical components of T, ,NXx

TonNE >~ (To nNX)y & (TonNXT)y,
(X7 Y) = 'DH(Xa Y) + PV(X7 Y)

(X1, Y1), (X2, Y2))nss = (X1 + Y1, Xo + Yo)gs.



Gauge transformation

Function v on NX¥. Unitary transformation:

S, =€ on L[*}(NY),
SEHAS,,
A~ A — grad(7).

Proposition

Pr(A — grad(y))lz = PHA,
Pv(A - grad(y)) = 0.



Gauge transformation

Function v on NX¥. Unitary transformation:

S, =€ on L[*}(NY),
SEHAS,,
A~ A — grad(7).

Proposition

Pr(A — grad(y))lz = PHA,
Pv(A - grad(y)) = 0.

Proof: y
Y(x,y) = /0 As(x,s) ds

does the job in each chart. Check that works globally.



Dilation in the normal directions

Unitary transformation:

Uy : L>(NX, dvolys) — L?(NX, dvol)
(Ue)(o, n) = VA m(a, n)(a, An)

Ignore dvolyy and m(c,n) > 0 for the moment.



Dilation in the normal directions

Unitary transformation:

Uy : L>(NX, dvolys) — L?(NX, dvol)
(Ue)(o, n) = VA m(a, n)(a, An)

Ignore dvolyy and m(c,n) > 0 for the moment.

Initial data

e ™o on [A(NE,dvol),  or = S,Urtbo.

o, is squeezed towards 3.



Plot of ¢(o,-) (blue) and (Uy))(o, ) (red)

V\Q&VA\J \/A\/\C@” "




Putting all together

We arrive at

e ™hy on  L2(NZ,dvolys)

with
Ly = U;S;H,\SA, U,.



Large A expansion

Local coordinates

NY

TNX :

x()

{x(a, n) = x(o)
y(o,n) = (v(a), n)

0/0x, 0/dy



Large A expansion
Local coordinates

Y x(o)

NS - {x(a, n) = x(o)
y(o,n) = (v(o),n)
TNY : 0/0x, 0/dy

Expand the metric in yA~!

s (x, yA ) = (GZ(X)(’ —yélM(X))m 2)
3x3



Hamiltonians
Hypothesis and notation

» A, V, W smooth functions of (o, n).
» Set A(o) = PyA(0,0) and V(o) = V(0,0).



Hamiltonians
Hypothesis and notation
» A, V, W smooth functions of (o, n).
» Set A(o) = PyA(0,0) and V(o) = V(0,0).

Expansion for L,

Ly = Hs + MHo, + O(A7h).
Hamiltonian on X:
Hs1 = idivs(igrads (¢)+Ay)+(A, i grads (v)+Av) s +(V+K)y.
Oscillator in the normal directions:

Hoxv = —Anp + ((n, Bn)gs + o .

will not depend on o



Main result

Theorem (J. Math. Phys. (2014))

» W has local minimum at X.

» 9,W(a,n) = O(|n]®) as |n| — 0.
» W(o,n) > c|n|?.

> gny complete metric.

Then for any ¢g, T > 0, and large A:

sup He—itLAwO . e—it(H):Jr)\?Ho,A)wOH <
te[0,T] o

Sk



Main result

Theorem (J. Math. Phys. (2014))

» W has local minimum at X.

» 9,W(a,n) = O(|n]®) as |n| — 0.
» W(o,n) > c|n|?.

> gny complete metric.

Then for any ¢g, T > 0, and large A:

sup He—itLAwO . e—it(H):Jr)\?Ho,A)wOH <
te[0,T] o

Sk

Remarks
> Neither orbits converge. Only their difference.

» Implies a statement on R3.
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Interpretation

Since
L2(NZ, dvolys) = L2(Z, dvol) ® L3(R, dy),
[Hs, Ho ] =0,
we have
Hy = hs @1,

Hox = 1® ho,x,



Interpretation

Since
L2(NZ, dvolys) = L2(Z, dvol) ® L3(R, dy),
[HZ7 HO,)\] - 07
we have
Hz = h): X /,
Hox = 1® ho,x,
and

exp(—it(Hs + AHo)) = exp(—itHs ) exp(—itA’Ho.»)
= exp(—iths) ® exp(—itAho ).

Motion on ¥ superposed by normal oscillations.



Sketch of proof

» Energy cutoff:
E- equals 1 if (1, L) < A2 and O otherwise.
> |n| cutoff:
N equals 1 if [n| < 6\ and 0 otherwise.
» Partition of unity for x:

{xi}-
» Resolution of identity:
1=1-1-1
= [Y2x5(0)?] - [N< + No] - [E< + E3]
j=1

=x1-Nc-E- 4+ Reminder.



We want to estimate

Notation: LO,)\ = Hy + )\2HO,)\-

||e_itLA¢0 _ e_itLO’*lﬁon
t d ) )
< | [ ds St b, 10 e o)
0 ds

< Ctsup (x1E<e™ " g, [Lox, N<] +N<(Ly — Lo )e 0 o)
S N—— e’
~{9yN<}Dy ~Dj Dx
+0(\™)



We want to estimate

Notation: LO,)\ = Hy + )\2Ho7)\.

He—itLAwO _ e_itLO’*lﬁon
t d ) )
< | [ ds St b, 10 e o)
0 ds

< Ctsup (x1E<e™ " g, [Lox, N<] +N<(Ly — Lo )e 0 o)
S N—— e’
~{0yN<}Dy ~Dj Dx
+0(\™)

Using Cauchy-Schwarz, we reduce the problem to
)\2H(X1N<E<){8},N<}Dye_"5L°MZJo|| < CA7! (Energy bounds).

l(x1N<E.) D, e 'stox o] < CA1/2 (Propagation bounds).
[DXvW]



Appendix



Energy bounds

Schematically
We have

DD+ V (x, y)+K(x, y)+ X (D Dy + X W(x, yA™h)) = Ly < M.

Use conservation of expected value of energy and positivity.
We obtain

(ATIDE)“(ATID) (D) )P DE+ (NP W (x, yA™h)) < C(A2Ly)H,

where |a|+p <2and | > 1.



Propagation bounds

Let
f(t) = expected value of DD, on e ™y,

Use:

» Gronwall’s inequality:
S<cre.  fo<c = sprn<cC
t

» Energy bounds.



Thank you for your attention.



