Quantitative derivation of the Gross-Pitaevskii equation

Gustavo de Oliveira ${ }^{1}$
Departamento de Matemática
Universidade Federal de São Carlos

February 2015

In collaboration with

Niels Benedikter and Benjamin Schlein
${ }^{1}$ Supported by FAPESP.

This talk is about

- Mathematics of many-body quantum mechanics.
- Dynamics of Bose-Einstein condensates.
- Effective description.
- How the Gross-Pitaevskii PDE emerges.

Plan

1. Introduction
2. Theorem
3. Outline of the proof

Wave function for N Bosonic particles

- N-particle wave function:

$$
\psi_{N, t}\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{C}, \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{3}, \quad t \in \mathbb{R}
$$

- Square-integrable and normalized:

$$
\begin{gathered}
\psi_{N, t} \in L^{2}\left(\mathbb{R}^{3 N}\right) \simeq L^{2}\left(\mathbb{R}^{3}\right) \otimes \cdots \otimes L^{2}\left(\mathbb{R}^{3}\right), \\
\int_{\mathbb{R}^{3 N}}\left|\psi_{N, t}\right|^{2}=1
\end{gathered}
$$

- $\left|\psi_{N, t}\right|^{2}$ probability density.
- $\psi_{N, t}$ is symmetric in each pair of variables x_{1}, \ldots, x_{N}.

Density operator

N-particle

$$
\begin{aligned}
& \gamma_{\psi_{N, t}}=\left|\psi_{N, t}\right\rangle\left\langle\psi_{N, t}\right| \quad \text { on } \quad L^{2}\left(\mathbb{R}^{3 N}\right) . \\
& \operatorname{Tr} \gamma_{\psi_{N, t}}=1, \quad\left\|\gamma_{\psi_{N, t}}\right\|:=\operatorname{Tr}\left|\gamma_{\psi_{N, t}}\right|
\end{aligned}
$$

1-particle

$$
\gamma_{\psi_{N, t}}^{(1)}=\operatorname{Tr}_{2 \rightarrow N} \gamma_{\psi_{N, t}} \quad \text { on } \quad L^{2}\left(\mathbb{R}^{3}\right)
$$

$\operatorname{Tr}_{2 \rightarrow N}$ Integrate out $N-1$ variables of the integral kernel of $\gamma_{\psi_{N, t}}$.
$\gamma_{\psi_{N, t}}^{(1)}$ 1-particle marginal: Plays the role of 1-particle wave-function.

Bose-Einstein condensation

In experiments, since 1995 (Nobel Prize 2001)
Trapped cold ($T \sim 10^{-9} \mathrm{~K}$) dilute gas of $N \sim 10^{3}$ Bosons.

Heuristically

$$
\begin{aligned}
& \psi_{N, t}\left(x_{1}, \ldots, x_{N}\right) \simeq \prod_{j=1}^{N} \varphi_{t}\left(x_{j}\right) \text { where } \varphi_{t} \in L^{2}\left(\mathbb{R}^{3}\right) \\
& \gamma_{\psi_{N, t}} \simeq\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \otimes \cdots \otimes\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right|
\end{aligned}
$$

Mathematically

$$
\left.\operatorname{Tr}\left|\gamma_{\psi_{N, t}}^{(1)}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \mid=0
$$

Model (which is realistic)

Quantum Hamiltonian in the Gross-Pitaevskii regime

$$
\begin{gathered}
H_{N}^{\text {trap }}=\sum_{j=1}^{N}\left(-\Delta_{x_{j}}+V_{\text {trap }}\left(x_{j}\right)\right)+\frac{1}{N} \sum_{i<j}^{N} N^{3} V\left(N\left(x_{i}-x_{j}\right)\right), \\
V_{\text {trap }}(y)=|y|^{2} \quad \text { and } \quad V \geq 0, \quad V(x)=V(|x|), \text { compact supp. }
\end{gathered}
$$

Very heuristically

$$
\frac{1}{N} N^{3} V(N \cdot) \sim \frac{1}{N} \delta(\cdot) \quad \text { for large } N
$$

models rare but strong collisions.

Mean-field character

Expect:

- Approximate factorization of condensate $\psi_{N, t}$ for large N
\qquad
- Approximate independence of particles
\Longrightarrow (by the Law of Large Numbers)
Potential experienced by the j th particle

$$
\begin{aligned}
=\frac{1}{N} \sum_{i<j}^{N} W\left(x_{i}-x_{j}\right) & \simeq \int d y W\left(x_{j}-y\right)\left|\varphi_{t}(y)\right|^{2} \\
& =\left(W *\left|\varphi_{t}\right|^{2}\right)\left(x_{j}\right) .
\end{aligned}
$$

- Should have

$$
i \partial_{t} \varphi_{t}=\left(-\Delta+V^{\text {trap }}\right) \varphi_{t}+W *\left|\varphi_{t}\right|^{2} \varphi_{t}
$$

Correlations between particles

Non-interacting gas
Condensate state: product state, no correlations.
Weakly interacting gas
Leading order 2-particle correlation can be modeled by the solution f to the zero-energy scattering equation:

$$
\left(-\Delta+\frac{1}{2} V\right) f=0 \quad \text { with } \quad f(x) \rightarrow 1 \text { as }|x| \rightarrow \infty
$$

- $f(x) \simeq 1-a|x|^{-1}$ as $|x| \rightarrow \infty$ where $a:=(8 \pi)^{-1} \int f V$.
- $f(N \cdot)$ solves zero-energy scatt. eqn. with $V \rightsquigarrow N^{2} V(N \cdot)$.

Time-independent theory

Ground state energy per particle Lieb, Seiringer and Yngvason (2000):

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \inf \operatorname{spec} H_{N}^{\text {trap }}=\min \left\{\mathcal{E}_{G P}(\varphi) \mid \varphi \in L^{2}\left(\mathbb{R}^{3}\right),\|\varphi\|=1\right\}
$$

where

$$
\mathcal{E}_{G P}(\varphi)=\int\left(|\nabla \varphi|^{2}+V_{\text {trap }}|\varphi|^{2}+4 \pi a|\varphi|^{4}\right) .
$$

The minimizer $\varphi_{G P}$ of $\mathcal{E}_{G P}$ obeys

$$
\left.\operatorname{Tr}\left|\gamma_{\psi_{N}^{\mathrm{gs}}}^{\mathrm{ss}}-\right| \varphi_{G P}\right\rangle\left\langle\varphi_{G P}\right| \mid \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty .
$$

Gross-Pitaevskii character

Recall

$$
i \partial_{t} \varphi_{t}=\left(-\Delta+V^{\text {trap }}\right) \varphi_{t}+W *\left|\varphi_{t}\right|^{2} \varphi_{t}
$$

Observe that (formally)

$$
N^{3} V(N \cdot) \rightarrow b \delta(\cdot) \quad \text { where } \quad b=\int V
$$

Taking into account correlations

$$
N^{3} V(N \cdot) f(N \cdot) \rightarrow 8 \pi a \delta(\cdot) \quad \text { where } \quad a=(8 \pi)^{-1} \int f V
$$

Time evolution of condensates

Initial data

$$
\psi_{N, 0}=\theta_{N}=\text { condensate state with correlations (not a product) }
$$

We construct initial data θ in Fock space:

$$
\theta=\theta_{0} \oplus \theta_{1} \oplus \cdots \oplus \theta_{N} \oplus \cdots \in \bigoplus_{n \geq 0} L_{\text {sym }}^{2}\left(\mathbb{R}^{3 n}\right)
$$

with N particles in average:

$$
\langle\theta, \mathcal{N} \theta\rangle \simeq N .
$$

\mathcal{N} number of particles operator on Fock space:

$$
(\mathcal{N} \theta)_{n}=n \theta_{n} .
$$

Initial data

Modified coherent state

$$
\theta=W(\sqrt{N} \varphi) T(k) \Omega
$$

$\Omega=$ finite particle state (e.g. Vac $=1 \oplus 0 \oplus 0 \oplus \cdots$)
$T(k)=$ Bogoliubov transformation (models correlations)

$$
k(x, y)=-N(1-f(N(x-y))) \varphi(x) \varphi(y)
$$

$$
\langle\theta, \mathcal{N} \theta\rangle \simeq N
$$

Coherent state

$$
\begin{gathered}
\xi=W(\sqrt{N} \varphi) \vee \mathrm{ac}=e^{-N\|\varphi\|^{2} / 2}\left[1 \oplus \varphi \oplus \frac{\varphi^{\otimes 2}}{\sqrt{2!}} \oplus \frac{\varphi^{\otimes 3}}{\sqrt{3!}} \oplus \cdots\right] \\
\langle\xi, \mathcal{N} \xi\rangle=N .
\end{gathered}
$$

Schrödinger equation on Fock space

Condensate state reached; traps are turned off

$$
H_{N}=H_{N}^{\text {trap }} \text { with } V_{\text {trap }} \equiv 0 .
$$

Hamiltonian on Fock space

$$
\mathcal{H}=H_{0} \oplus H_{1} \oplus \cdots \oplus H_{N} \oplus \cdots
$$

Time evolution is observed

$$
\left\{\begin{array}{l}
i \partial_{t} \Psi_{t}=\mathcal{H} \Psi_{t} \\
\Psi_{0}=W(\sqrt{N} \varphi) T(k) \Omega
\end{array} \quad \text { as } \quad N \rightarrow \infty .\right.
$$

Theorem [Benedikter, Oliveira, Schlein, CPAM 2014]

$V \in L^{1} \cap L^{3}\left(\mathbb{R}^{3},\left(1+|x|^{6}\right) d x\right), V \geq 0, \varphi \in H^{4}\left(\mathbb{R}^{3}\right)$,
$\left\langle\Omega,\left(\mathcal{N}+1+\mathcal{N}^{2} / N+\mathcal{H}\right) \Omega\right\rangle \leq C$.
Consider the solution

$$
\Psi_{t}=e^{-i \mathcal{H} t} W(\sqrt{N} \varphi) T(k) \Omega
$$

Let

$$
\Gamma_{N, t}^{(1)}=\text { one-particle reduced density operator of } \Psi .
$$

Then

$$
\left.\operatorname{Tr}\left|\Gamma_{N, t}^{(1)}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq C \exp (C \exp (C|t|)) \frac{1}{\sqrt{N}}\right.
$$

for all t and N, where φ_{t} solves (time-dep. Gross-Pitaevskii eqn.)

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+8 \pi a\left|\varphi_{t}\right|^{2} \varphi_{t} \quad \text { with } \quad \varphi_{0}=\varphi
$$

$a>0$ (scattering length of V).

Remarks

Based on

- Hepp '74, Ginibre-Velo '79, Rodnianski-Schlein '09,...

Previous results

- Spohn '80, Erdös-Schlein-Yau '06, Pickl '10,... (no rate of convergence)

Other results

- Adami-Golse-Teta '07, Grillakis-Machedon-Margetis '10,...

Large bibliography. . .
Look at arXiv:1208.0373 (or Benedikter's review arXiv:1404.4568) and Schlein's notes arXiv:1210.1603.

Outline of the proof

Creation and annihilation operators on Fock space

$f \in L^{2}\left(\mathbb{R}^{3}\right)$ and ψ in Fock space:

$$
\begin{aligned}
& \left(a^{*}(f) \psi\right)_{n}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f\left(x_{j}\right) \psi_{n-1}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right), \\
& (a(f) \psi)_{n}\left(x_{1}, \ldots, x_{n}\right)=\sqrt{n+1} \int d y f(y) \psi_{n+1}\left(y, x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Commutation relations

$$
\left[a(f), a^{*}(g)\right]=\langle f, g\rangle, \quad[a(f), a(g)]=\left[a^{*}(f), a^{*}(g)\right]=0 .
$$

Operator-valued distributions

$a_{x}, a_{x}^{*}, x \in \mathbb{R}^{3}$:

$$
a^{*}(f)=\int d x f(x) a_{x}^{*} \quad \text { and } \quad a(f)=\int d x \overline{f(x)} a_{x} .
$$

Commutation relations

$$
\left[a_{x}, a_{y}^{*}\right]=\delta(x-y) \quad \text { and } \quad\left[a_{x}, a_{y}\right]=\left[a_{x}^{*}, a_{y}^{*}\right]=0 .
$$

Operators on Fock space

$$
\begin{gathered}
\mathcal{N}=\int d x a_{x}^{*} a_{x}, \\
\mathcal{H}=\int d x \nabla_{x} a_{x}^{*} \nabla_{x} a_{x}+\frac{1}{2 N} \int d x d y N^{3} V(N(x-y)) a_{x}^{*} a_{y}^{*} a_{y} a_{x}, \\
W(f)=\exp \left(a^{*}(f)-a(f)\right),
\end{gathered}
$$

$$
T(k)=\exp \left[\frac{1}{2} \int d x d y k(x, y) a_{x}^{*} a_{y}^{*}-\frac{1}{2} \int d x d y \overline{k(x, y)} a_{x} a_{y}\right] .
$$

Conjugation formulas

Weyl operator $W(f)$:

$$
W^{*}(f) a_{x}^{*} W(f)=a_{x}^{*}+\overline{f(x)}, \quad W^{*}(f) a_{x} W(f)=a_{x}+f(x)
$$

Bogoliubov transformation $T(k)$:

$$
T^{*}(k) a_{x}^{*} T(k)=\int d y\left(\cosh (k)(y, x) a_{y}^{*}+\sinh (k)(y, x) a_{y}\right) .
$$

Fluctuation dynamics

Integral kernel of $\Gamma_{N, t}^{(1)}-\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right|$:

$$
\Gamma_{N, t}^{(1)}(x, y)-\overline{\varphi_{t}(y)} \varphi_{t}(x)=\frac{\left\langle\Psi_{t}, a_{y}^{*} a_{x} \Psi_{t}\right\rangle}{\left\langle\Psi_{t}, \mathcal{N} \Psi_{t}\right\rangle}-\overline{\varphi_{t}(y)} \varphi_{t}(x)
$$

We want to approximate

$$
\Psi_{t}=e^{-i \mathcal{H} t} W(\sqrt{N} \varphi) T(k) \Omega \simeq W\left(\sqrt{N} \varphi_{t}\right) T\left(k_{t}\right) \Omega
$$

Define

$$
U_{N}(t)=T^{*}\left(k_{t}\right) W^{*}\left(\sqrt{N} \varphi_{t}\right) e^{-i \mathcal{H} t} W(\sqrt{N} \varphi) T(k)
$$

We find the estimate

$$
\left.\operatorname{Tr}\left|\Gamma_{N, t}^{(1)}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq \frac{C}{\sqrt{N}}\left\langle U_{N}(t) \Omega, \mathcal{N} U_{N}(t) \Omega\right\rangle\right.
$$

Controlling the number of fluctuations

We are left to prove that $\langle\mathcal{N}\rangle_{t}:=\left\langle U_{N}(t) \Omega, \mathcal{N} U_{N}(t) \Omega\right\rangle \leq C$ where

$$
i \partial_{t} U_{N}(t)=\mathcal{L}_{N}(t) U_{N}(t)
$$

Explicitly (using shorthands)

$$
\mathcal{L}_{N}(t)=\left(i \partial T_{t}^{*}\right) T_{t}+T_{t}^{*}\left[\left(i \partial_{t} W_{t}^{*}\right) W_{t}+W_{t}^{*} \mathcal{H} W_{t}\right] T_{t}
$$

To use Grönwall's Lemma, we compute

$$
\frac{d}{d t}\langle\mathcal{N}\rangle_{t}=\left\langle\left[i \mathcal{L}_{N}(t), \mathcal{N}\right]\right\rangle_{t} \quad\left(\text { notation }\langle\cdot\rangle_{t}\right)
$$

The term $\left(i \partial T_{t}^{*}\right) T_{t}$ in $\mathcal{L}_{N}(t)$ is harmless. Let us focus on the second term.

Cancellations I

- We have

$$
\left(i \partial_{t} W_{t}^{*}\right) W_{t}=-\sqrt{N}\left[a^{*}\left(i \partial_{t} \varphi_{t}\right)+a(\cdots)\right]+\text { irrelevant }
$$

- For $W_{t}^{*} \mathcal{H} W_{t}$ we use the conjugation formulas and expand. We get terms:

linear in a, a^{*}	formally $O\left(N^{1 / 2}\right)$.
quadratic	$O(1)$.
cubic	$O\left(N^{-1 / 2}\right)$.
quartic	$O\left(N^{-1}\right)$.

- There is no complete cancellation of linear terms in $W_{t}^{*} \mathcal{H} W_{t}$ with $\left(i \partial_{t} W_{t}^{*}\right) W_{t}$. We are left with

$$
\begin{equation*}
\sqrt{N} a^{*}\left[\left(N^{3} V(N \cdot)(1-f(N \cdot)) *\left|\varphi_{t}\right|^{2}\right) \varphi_{t}\right)+\sqrt{N} a(\cdots) \tag{}
\end{equation*}
$$

Conjugation by T_{t} gives cubic terms, not normal-ordered. Normal-ordering gives linear terms which cancel (*).

Cancellations II

- Conjugation by T_{t} gives quartic terms, not normal-ordered. Normal-ordering and using zero-energy scatt. eqn. cancels quadratic terms.
- We are able to prove

$$
\left[i \mathcal{L}_{N}(t), \mathcal{N}\right] \leq \mathcal{H}+C_{t}\left(\mathcal{N}^{2} / N+\mathcal{N}+1\right)
$$

- Since $\mathcal{L}_{N}(t)=\mathcal{H}+$ other terms, we are able to prove

$$
\begin{equation*}
\mathcal{H} \leq C_{t}\left(\mathcal{L}_{N}(t)+\mathcal{N}^{2} / N+\mathcal{N}+1\right) \tag{**}
\end{equation*}
$$

Thus

$$
\left[i \mathcal{L}_{N}(t), \mathcal{N}\right] \leq C_{t}\left(\mathcal{L}_{N}(t)+\mathcal{N}^{2} / N+\mathcal{N}+1\right)
$$

Grönwall

- Control $\left\langle\mathcal{N}^{2} / N\right\rangle_{t}$ by $\left\langle(\mathcal{N}+1)^{2} / N\right\rangle_{t=0}$ and $\langle\mathcal{N}\rangle_{t}$. We get

$$
\frac{d}{d t}\langle\mathcal{N}\rangle_{t} \leq C_{t}\left\langle\mathcal{N}+1+\mathcal{L}_{N}(t)\right\rangle_{t}+C_{t}\left\langle(\mathcal{N}+1)^{2} / N\right\rangle_{t=0}
$$

- To close the scheme, we need to bound $\left\langle\mathcal{L}_{N}(t)\right\rangle_{t}$. We find

$$
\frac{d}{d t}\left\langle\mathcal{L}_{N}(t)\right\rangle_{t} \leq C_{t}\left\langle\mathcal{N}+1+\mathcal{L}_{N}(t)\right\rangle_{t}+C_{t}\left\langle(\mathcal{N}+1)^{2} / N\right\rangle_{t=0}
$$

Thus, for D_{t} to be fixed,

$$
\begin{aligned}
& \frac{d}{d t}\left\langle D_{t}(\mathcal{N}+1)+\mathcal{L}_{N}(t)\right\rangle_{t} \\
& \quad \leq C_{t}\left\langle D_{t}(\mathcal{N}+1)+\mathcal{L}_{N}(t)\right\rangle_{t}+C_{t}\left\langle(\mathcal{N}+1)^{2} / N\right\rangle_{t=0}
\end{aligned}
$$

Continuing Grönwall...

- Thus, by Grönwall's Lemma,

$$
\left.\left.\begin{array}{l}
\left\langle D_{t}(\mathcal{N}\right.
\end{array} \quad+1\right)+\mathcal{L}_{N}(t)\right\rangle_{t} .
$$

- But there exists $C_{t}>0$ such that (using $\left({ }^{* *}\right)$ and positivity)

$$
\mathcal{L}_{N}(t)+C_{t}\left(\mathcal{N}^{2} / N+\mathcal{N}\right) \geq 0
$$

Choosing $D_{t}=C_{t}+1$, we obtain

$$
\langle\mathcal{N}\rangle_{t} \leq\left\langle\mathcal{L}_{N}(t)+D_{t}\left(\mathcal{N}^{2} / N+N\right)\right\rangle_{t} \leq C \exp (C \exp (C t))
$$

Thank you for your attention!

