Quantitative derivation of the
Gross-Pitaevskii equation

Gustavo de Oliveiral

Departamento de Matematica
Universidade Federal de S3o Carlos

February 2015

In collaboration with

Niels Benedikter and  Benjamin Schlein

!Supported by FAPESP.



This talk is about

v

Mathematics of many-body quantum mechanics.

» Dynamics of Bose-Einstein condensates.

v

Effective description.

v

How the Gross-Pitaevskii PDE emerges.
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Wave function for N Bosonic particles

v

N-particle wave function:

wN,t(Xla---axN)E(Cy Xl,...,XN€R3, teR.

v

Square-integrable and normalized:

e € LPRNV) ~ 2(RY) @ --- @ L2(R3),

/ W’N,t|2 =1
R3N
|T/1N,t|2 probability density.

v

v

P, is symmetric in each pair of variables xq, ..., xpn.



Density operator

N-particle

WfN,t:WN,thN,t’ on LQ(R?’N).

Tr’wa,t =1, ||7¢N,t|| =Tr ”WW,J'

1-particle

1
77(#/3,t =TroN Yy, ON L2(R3).
Tro_n Integrate out N — 1 variables of the integral
kernel of vy, ..

’yl(bll\?t 1-particle marginal: Plays the role of 1-particle

wave-function.



Bose-Einstein condensation
In experiments, since 1995 (Nobel Prize 2001)

Trapped cold (T ~ 107°K) dilute gas of N ~ 103 Bosons.
Heuristically

Y e(Xa, ..o, X H(pt Xj) where ¢, € L2(R3).
Veow,e = |90t><<ﬂt| ® - @ |pr) (-
Mathematically

Tr |7$N),t — lpe) (el | = 0.



Model (which is realistic)

Quantum Hamiltonian in the Gross-Pitaevskii regime

N N
ra 1
Hu™ =D (= A + Virap(x))) + N > NV(N(xi — X)),
j=1 i<j

Virap(y) = ly[> and V>0, V(x) = V(|x]), compact supp.
Very heuristically

1 1
—N3V(N-) ~ =6(-
N (N-) N5( ) for large N

models rare but strong collisions.



Mean-field character

Expect:

» Approximate factorization of condensate vy ; for large N
=

» Approximate independence of particles
= (by the Law of Large Numbers)

Potential experienced by the jth particle

1N
— 5 2 Wik = x) = [ dy Wiy = ey
i<j
= (W x |<Pt’2)(xj)~
=
» Should have

iOrpr = (— A + VIP)op + W |2 4.



Correlations between particles

Non-interacting gas
Condensate state: product state, no correlations.

Weakly interacting gas
Leading order 2-particle correlation can be modeled by the solution
f to the zero-energy scattering equation:

1
(—A+§V)f:0 with f(x) = 1 as |x| — oo.

» f(x) =~ 1—alx|7! as |x| — co where a := (87) ! [ fV.
» f(N-) solves zero-energy scatt. eqn. with V ~ N2V/(N.).



Time-independent theory

Ground state energy per particle
Lieb, Seiringer and Yngvason (2000):

1
lim N inf spec Hy™® = min{&ep(¢) | ¢ € LA(R3?), |l¢| = 1}

N—o00

where
Ep(¢) = [ (196 + Viraplil? + 4malil).

The minimizer pgp of Egp obeys

Tr‘ Yy — leep) (@apl ‘ —0 as N — oco.



Gross-Pitaevskii character

Recall
i0rpr = (—A + VI*)or + W x |20

Observe that (formally)

N3V(N-) = b3(-)  where b:/V.

Taking into account correlations

N3V(N)F(N-) = 8rad(-) where a=— (sﬂ)*/fv.



Time evolution of condensates

Initial data

Yy = 0 = condensate state with correlations (not a product)
We construct initial data € in Fock space:

9:90@01@"‘@9N@ €®LsymR3n

n>0
with N particles in average:
(O,NO) ~ N
N number of particles operator on Fock space:

(NO), =



Initial data

Modified coherent state
0 = W(VNp) T (k).

Q = finite particle state (e.g. Vac =140 0d )
T (k) = Bogoliubov transformation (models correlations)

k(x,y) = =N(1 = F(N(x = y)))e(x)e(y)

(0,N6) ~ N.

Coherent state

¢ = W(VNg)Vac = e MeP2[1 g oo 0 0 95 o
V20 T V31

(&N =N.



Schrodinger equation on Fock space

Condensate state reached; traps are turned off
Hy = Hy™ with Vipap = 0.
Hamiltonian on Fock space
H=Hy O H @ OHyD---

Time evolution is observed

{iatwt = "V as N — o

Vo = W(VNp) T (k)Q



Theorem [Benedikter, Oliveira, Schlein, CPAM 2014]

Velln L3(R3, 1+ |x\6)dx), V>0 ¢p¢€ H4(R3),
(Q,(N+1+N?2/N+H)Q) < C.
Consider the solution

W, = e MW(VNY) T(K)Q.

Let
r(,\})t = one-particle reduced density operator of W.

Then
Tr‘ rS\},)t = |oe) (et ’ < Cexp(Cexp(Clt]))

-

for all t and N, where ¢, solves (time-dep. Gross-Pitaevskii eqn.)
i0rpr = — Ay + 8malpe |20t with ©wo =,

a > 0 (scattering length of V).



Remarks

Based on

» Hepp '74, Ginibre—Velo '79, Rodnianski—Schlein '09,. ..

Previous results

» Spohn '80, Erdés—Schlein—Yau '06, Pickl '10,. ..
(no rate of convergence)

Other results
» Adami-Golse—Teta '07, Grillakis—-Machedon—Margetis '10,. ..

Large bibliography. ..
Look at arXiv:1208.0373 (or Benedikter's review arXiv:1404.4568)
and Schlein’s notes arXiv:1210.1603.


http://arxiv.org/abs/1208.0373
http://arxiv.org/abs/1404.4568
http://arxiv.org/abs/1210.1603

Outline of the proof



Creation and annihilation operators on Fock space

f € L2(R3) and % in Fock space:
(@ (F)Y)n(x1y .-y %n)
1 n

= 7 Z f(Xj)"Lﬂn_l(Xl, ey Xj—1, Xjt1, - - - ,Xn),
njzl

() x0) = VA + L [ dy O maa(yxas ).

Commutation relations

[a(f), a"(g)]l = (f.g),  [a(f), a(g)] = [a7(F), a"(g)] = O.



Operator-valued distributions

at, x € R3:

:/dx f(x)ax and

Commutation relations

aXv

[ax, ay] = d(x — y) and

[aX> ay] =

[x?y

= / dx f(x)ay

]=o0.



Operators on Fock space

N = /dx ayay,
1
H = /dx VxayVyax + ﬂ/dxdy N3V(N(x —Y))af(a;‘,ayax,
W(f) = exp(a"(f) — a(f)),

T (k) —exp[ /dxdyk X, y)ayay, — f/dxdyk X,y)axay|.



Conjugation formulas

Weyl operator W(f):

W*(fayW(f) = a; + f(x), W*(faxW(f) = ax + f(x),

Bogoliubov transformation T (k):

T*(k)a: T(k) = /dy(cosh(k)(y,x)a; +sinh(K)(y, x)ay ).



Fluctuation dynamics

Integral kernel of F — l@e) (ot

V., a¥a, WV,
) — i) = S B2 G

We want to approximate

W, = e MEW(VNQ) T(K)Q ~ W(VNp,) T (k).
Define

Un(t) = T*(ke)W*(VNpr)e P W(VN) T (k).
We find the estimate

Tf\ r(ﬁ,)t = |pe) (e \ < \CﬁN<UN(t)Q,NUN(t)Q>.



Controlling the number of fluctuations

We are left to prove that (NV); = (Un(t)Q2, N Upn(t)2) < C where
i@tUN(t) = ﬁN(t)UN(t).

Explicitly (using shorthands)

La(t) = (10T Ty + TI(10: W)W, + WrHW,]T,.

To use Gronwall’s Lemma, we compute

&N = {Lu() M) (notation {-).)

The term (i0T;)T: in Ly(t) is harmless. Let us focus on the
second term.



Cancellations |
» We have
(i0: W)W = —V/N[a*(idspe) + a(- - - )] + irrelevant

» For W;/HW; we use the conjugation formulas and expand.
We get terms:

linear in a, a* formally O(N'/?).

quadratic O(1).
cubic O(N—1/?).
quartic O(N—1).

» There is no complete cancellation of linear terms in WH W,
with (i0: W )W;. We are left with

VN [(NPV(N-)(1 = F(N-)) * [oe)oe) + VNa(- ). (¥)

Conjugation by T; gives cubic terms, not normal-ordered.
Normal-ordering gives linear terms which cancel (*).



Cancellations I

» Conjugation by T; gives quartic terms, not normal-ordered.
Normal-ordering and using zero-energy scatt. eqn. cancels
quadratic terms.

» We are able to prove
Ln(t), N1 <HA+ CGN?/N+N +1).
» Since Ly(t) = H + other terms, we are able to prove
H < Ce(Ln(t) + N2 /N + N +1). (**)
Thus

[iLn(t),NT < Ce(Ln(t) + N?/N + N +1).



Gronwall

» Control (N?/N); by (N +1)?/N);—o and (N');. We get

SN S GUN + 1+ La(e))e + GV + 172/ W) o,

» To close the scheme, we need to bound (Ly(t)):. We find

%<£N(t)>t < GN + 1+ Ly(t))e + C{(N +1)?/N)eo.

Thus, for D; to be fixed,

9 DU +1) + Li(1))e

dt
< Ct<Dt(N+ 1) + ﬁ/\/(t»t + Ct<(N+ 1)2/N>t:0.



Continuing Gronwall...

> Thus, by Gronwall's Lemma,

(De(N +1) + L(t))e
< Cexp(Cexp(Ct))(Ln(0) + N + 1+ N?/N)—o.

» But there exists C; > 0 such that (using (**) and positivity)
Ln(t) + C:(N?/N+N) > 0.
Choosing D; = C; + 1, we obtain

(M)t < (Ln(t) + De(N?/N + N))e < Cexp(Cexp(Ct)).



Thank you for your attention!



