Quantitative derivation of the Gross-Pitaevskii equation

Gustavo de Oliveira¹

Departamento de Matemática Universidade Federal de São Carlos

February 2015

In collaboration with

Niels Benedikter and Benjamin Schlein

¹Supported by FAPESP.

This talk is about

- Mathematics of many-body quantum mechanics.
- Dynamics of Bose-Einstein condensates.
- Effective description.
- ▶ How the Gross-Pitaevskii PDE emerges.

Plan

- 1. Introduction
- 2. Theorem
- 3. Outline of the proof

Wave function for N Bosonic particles

► *N*-particle wave function:

$$\psi_{N,t}(x_1,\ldots,x_N)\in\mathbb{C}, \qquad x_1,\ldots,x_N\in\mathbb{R}^3, \qquad t\in\mathbb{R}.$$

Square-integrable and normalized:

$$\psi_{N,t} \in L^2(\mathbb{R}^{3N}) \simeq L^2(\mathbb{R}^3) \otimes \cdots \otimes L^2(\mathbb{R}^3),$$

$$\int_{\mathbb{R}^{3N}} |\psi_{N,t}|^2 = 1.$$

- $|\psi_{N,t}|^2$ probability density.
- $\psi_{N,t}$ is symmetric in each pair of variables x_1, \ldots, x_N .

Density operator

N-particle

$$\gamma_{\psi_{N,t}} = |\psi_{N,t}\rangle\langle\psi_{N,t}| \quad \text{on} \quad L^2(\mathbb{R}^{3N}).$$

$$\operatorname{Tr}\gamma_{\psi_{N,t}} = 1, \qquad \|\gamma_{\psi_{N,t}}\| := \operatorname{Tr}|\gamma_{\psi_{N,t}}|.$$

1-particle

$$\gamma_{\psi_{N,t}}^{(1)} = \operatorname{Tr}_{2 \to N} \gamma_{\psi_{N,t}} \quad \text{on} \quad L^2(\mathbb{R}^3).$$

 $\operatorname{Tr}_{2 o N}$ Integrate out N-1 variables of the integral kernel of $\gamma_{\psi_{N,t}}.$

 $\gamma_{\psi_{N,t}}^{(1)}$ 1-particle marginal: Plays the role of 1-particle wave-function.

Bose-Einstein condensation

In experiments, since 1995 (Nobel Prize 2001)

Trapped cold ($T \sim 10^{-9} K$) dilute gas of $N \sim 10^3$ Bosons.

Heuristically

$$\psi_{N,t}(x_1,\ldots,x_N) \simeq \prod_{j=1}^N \varphi_t(x_j)$$
 where $\varphi_t \in L^2(\mathbb{R}^3)$.
 $\gamma_{\psi_{N,t}} \simeq |\varphi_t\rangle\langle\varphi_t| \otimes \cdots \otimes |\varphi_t\rangle\langle\varphi_t|$.

Mathematically

$$\operatorname{Tr} \left| \gamma_{\psi_{N_t}}^{(1)} - |\varphi_t\rangle \langle \varphi_t| \right| = 0.$$

Model (which is realistic)

Quantum Hamiltonian in the Gross-Pitaevskii regime

$$H_N^{\mathrm{trap}} = \sum_{j=1}^N \left(-\Delta_{x_j} + V_{\mathrm{trap}}(x_j) \right) + \frac{1}{N} \sum_{i < j}^N N^3 V(N(x_i - x_j)),$$

$$V_{\mathrm{trap}}(y) = |y|^2$$
 and $V \ge 0$, $V(x) = V(|x|)$, compact supp.

Very heuristically

$$\frac{1}{N}N^3V(N\cdot)\sim\frac{1}{N}\delta(\cdot)$$
 for large N

models rare but strong collisions.

Mean-field character

Expect:

- ▶ Approximate factorization of condensate $\psi_{N,t}$ for large N \Longrightarrow
- ▶ Approximate independence of particles
 ⇒ (by the Law of Large Numbers)

Potential experienced by the *j*th particle

$$= \frac{1}{N} \sum_{i < j}^{N} W(x_i - x_j) \simeq \int dy \ W(x_j - y) |\varphi_t(y)|^2$$
$$= (W * |\varphi_t|^2)(x_j).$$

 \Longrightarrow

Should have

$$i\partial_t \varphi_t = (-\Delta + V^{\text{trap}})\varphi_t + W * |\varphi_t|^2 \varphi_t.$$

Correlations between particles

Non-interacting gas

Condensate state: product state, no correlations.

Weakly interacting gas

Leading order 2-particle correlation can be modeled by the solution f to the zero-energy scattering equation:

$$\Big(-\Delta+rac{1}{2}V\Big)f=0 \quad ext{with} \quad f(x) o 1 ext{ as } |x| o \infty.$$

- $f(x) \simeq 1 a|x|^{-1}$ as $|x| \to \infty$ where $a := (8\pi)^{-1} \int fV$.
- ▶ $f(N \cdot)$ solves zero-energy scatt. eqn. with $V \rightsquigarrow N^2 V(N \cdot)$.

Time-independent theory

Ground state energy per particle

Lieb, Seiringer and Yngvason (2000):

$$\lim_{N\to\infty}\frac{1}{N}\inf\operatorname{spec} H_N^{\operatorname{trap}}=\min\{\mathcal{E}_{\mathit{GP}}(\varphi)\,|\,\varphi\in L^2(\mathbb{R}^3),\,\,\|\varphi\|=1\}$$

where

$$\mathcal{E}_{\mathit{GP}}(arphi) = \int \left(|
abla arphi|^2 + V_{\mathrm{trap}} |arphi|^2 + 4\pi a |arphi|^4
ight).$$

The minimizer φ_{GP} of $\mathcal{E}_{\mathit{GP}}$ obeys

$$\operatorname{Tr} \left| \gamma_{\psi_N^{\mathrm{gs}}} - |\varphi_{GP}\rangle \langle \varphi_{GP}| \, \right| o 0 \quad \text{as} \quad N o \infty.$$

Gross-Pitaevskii character

Recall

$$i\partial_t \varphi_t = (-\Delta + V^{\text{trap}})\varphi_t + W * |\varphi_t|^2 \varphi_t.$$

Observe that (formally)

$$N^3V(N\cdot) o b\,\delta(\cdot)$$
 where $b=\int V$.

Taking into account correlations

$$N^3V(N\cdot)f(N\cdot) \to 8\pi a \,\delta(\cdot)$$
 where $a=(8\pi)^{-1}\int f \,V.$

Time evolution of condensates

Initial data

 $\psi_{N,0} = \theta_N = \text{condensate state with correlations (not a product)}$

We construct initial data θ in Fock space:

$$\theta = \theta_0 \oplus \theta_1 \oplus \cdots \oplus \theta_{N} \oplus \cdots \in \bigoplus_{n \geq 0} L^2_{sym}(\mathbb{R}^{3n})$$

with N particles in average:

$$\langle \theta, \mathcal{N}\theta \rangle \simeq N.$$

 ${\cal N}$ number of particles operator on Fock space:

$$(\mathcal{N}\theta)_n = n\,\theta_n.$$

Initial data

Modified coherent state

$$\theta = W(\sqrt{N}\varphi)T(k)\Omega.$$

$$\Omega=$$
 finite particle state (e.g. $\mathrm{Vac}=1\oplus 0\oplus 0\oplus \cdots$) $T(k)=$ Bogoliubov transformation (models correlations) $k(x,y)=-N(1-f(N(x-y)))\varphi(x)\varphi(y)$ $\langle \theta, \mathcal{N}\theta \rangle \simeq N.$

Coherent state

$$\xi = \textit{W}(\sqrt{\textit{N}}\varphi)\,\mathsf{Vac} = e^{-\textit{N}\|\varphi\|^2/2} \bigg[1 \oplus \varphi \oplus \frac{\varphi^{\otimes 2}}{\sqrt{2!}} \oplus \frac{\varphi^{\otimes 3}}{\sqrt{3!}} \oplus \cdots \bigg]$$

$$\langle \xi, \mathcal{N}\xi \rangle = \textit{N}.$$

Schrödinger equation on Fock space

Condensate state reached; traps are turned off

$$H_N = H_N^{\rm trap}$$
 with $V_{\rm trap} \equiv 0$.

Hamiltonian on Fock space

$$\mathcal{H}=H_0\oplus H_1\oplus \cdots \oplus H_N\oplus \cdots$$

Time evolution is observed

$$egin{cases} i\partial_t \Psi_t = \mathcal{H} \Psi_t \ \Psi_0 = W(\sqrt{N}arphi) \mathcal{T}(k)\Omega \end{cases}$$
 as $N o \infty$

Theorem [Benedikter, Oliveira, Schlein, CPAM 2014]

$$V \in L^1 \cap L^3(\mathbb{R}^3, (1+|x|^6)dx), \ V \geq 0, \ \varphi \in H^4(\mathbb{R}^3), \ \langle \Omega, (\mathcal{N}+1+\mathcal{N}^2/N+\mathcal{H})\Omega \rangle \leq C.$$
 Consider the solution

$$\Psi_t = e^{-i\mathcal{H}t}W(\sqrt{N}\varphi)T(k)\Omega.$$

Let

 $\Gamma_{N,t}^{(1)} =$ one-particle reduced density operator of Ψ .

Then

$$\mathsf{Tr} \left| \, \mathsf{\Gamma}_{N,t}^{(1)} - |arphi_t
angle \langle arphi_t| \,
ight| \leq \mathit{C} \, \mathsf{exp}(\mathit{C} \, \mathsf{exp}(\mathit{C}|t|)) rac{1}{\sqrt{\mathit{N}}}$$

for all t and N, where φ_t solves (time-dep. Gross-Pitaevskii eqn.)

$$i\partial_t \varphi_t = -\Delta \varphi_t + 8\pi a |\varphi_t|^2 \varphi_t$$
 with $\varphi_0 = \varphi$,

a > 0 (scattering length of V).

Remarks

Based on

► Hepp '74, Ginibre–Velo '79, Rodnianski–Schlein '09,...

Previous results

Spohn '80, Erdös–Schlein–Yau '06, Pickl '10,... (no rate of convergence)

Other results

Adami–Golse–Teta '07, Grillakis–Machedon–Margetis '10,...

Large bibliography...

Look at arXiv:1208.0373 (or Benedikter's review arXiv:1404.4568) and Schlein's notes arXiv:1210.1603.

Outline of the proof

Creation and annihilation operators on Fock space

 $f \in L^2(\mathbb{R}^3)$ and ψ in Fock space:

$$(a^*(f)\psi)_n(x_1,\ldots,x_n) = \frac{1}{\sqrt{n}}\sum_{j=1}^n f(x_j)\psi_{n-1}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n),$$

$$(a(f)\psi)_n(x_1,\ldots,x_n) = \sqrt{n+1} \int dy \, f(y)\psi_{n+1}(y,x_1,\ldots,x_n).$$

Commutation relations

$$[a(f), a^*(g)] = \langle f, g \rangle, \qquad [a(f), a(g)] = [a^*(f), a^*(g)] = 0.$$

Operator-valued distributions

$$a_x$$
, a_x^* , $x \in \mathbb{R}^3$:

$$a^*(f) = \int dx \, f(x) a_x^*$$
 and $a(f) = \int dx \, \overline{f(x)} a_x$.

Commutation relations

$$[a_x, a_y^*] = \delta(x - y)$$
 and $[a_x, a_y] = [a_x^*, a_y^*] = 0.$

Operators on Fock space

$$\mathcal{N} = \int dx \, a_x^* a_x,$$

$$\mathcal{H} = \int dx \, \nabla_x a_x^* \nabla_x a_x + \frac{1}{2N} \int dx dy \, N^3 V(N(x-y)) a_x^* a_y^* a_y a_x,$$

$$W(f) = \exp(a^*(f) - a(f)),$$

$$T(k) = \exp\left[\frac{1}{2} \int dx dy \, k(x,y) a_x^* a_y^* - \frac{1}{2} \int dx dy \, \overline{k(x,y)} a_x a_y\right].$$

Conjugation formulas

Weyl operator W(f):

$$W^*(f)a_x^*W(f)=a_x^*+\overline{f(x)}, \qquad W^*(f)a_xW(f)=a_x+f(x),$$

Bogoliubov transformation T(k):

$$T^*(k)a_x^*T(k) = \int dy \left(\cosh(k)(y,x)a_y^* + \sinh(k)(y,x)a_y\right).$$

Fluctuation dynamics

Integral kernel of $\Gamma_{N,t}^{(1)} - |\varphi_t\rangle\langle\varphi_t|$:

$$\Gamma_{N,t}^{(1)}(x,y) - \overline{\varphi_t(y)}\varphi_t(x) = \frac{\langle \Psi_t, a_y^* a_x \Psi_t \rangle}{\langle \Psi_t, \mathcal{N} \Psi_t \rangle} - \overline{\varphi_t(y)}\varphi_t(x).$$

We want to approximate

$$\Psi_t = e^{-i\mathcal{H}t}W(\sqrt{N}\varphi)T(k)\Omega \simeq W(\sqrt{N}\varphi_t)T(k_t)\Omega.$$

Define

$$U_N(t) = T^*(k_t)W^*(\sqrt{N}\varphi_t)e^{-i\mathcal{H}t}W(\sqrt{N}\varphi)T(k).$$

We find the estimate

$$\mathsf{Tr} \, \Big| \, \mathsf{\Gamma}_{N,t}^{(1)} - |arphi_t
angle \langle arphi_t| \, \Big| \leq rac{\mathcal{C}}{\sqrt{N}} \langle \mathit{U}_{N}(t)\Omega, \mathcal{N} \, \mathit{U}_{N}(t)\Omega
angle.$$

Controlling the number of fluctuations

We are left to prove that $\langle \mathcal{N} \rangle_t \coloneqq \langle U_N(t)\Omega, \mathcal{N} U_N(t)\Omega \rangle \leq C$ where

$$i\partial_t U_N(t) = \mathcal{L}_N(t)U_N(t).$$

Explicitly (using shorthands)

$$\mathcal{L}_{N}(t) = (i\partial T_{t}^{*})T_{t} + T_{t}^{*}[(i\partial_{t}W_{t}^{*})W_{t} + W_{t}^{*}\mathcal{H}W_{t}]T_{t}.$$

To use Grönwall's Lemma, we compute

$$\frac{d}{dt}\langle \mathcal{N} \rangle_t = \langle [i\mathcal{L}_N(t), \mathcal{N}] \rangle_t \qquad \text{(notation } \langle \cdot \rangle_t)$$

The term $(i\partial T_t^*)T_t$ in $\mathcal{L}_N(t)$ is harmless. Let us focus on the second term.

Cancellations I

We have

$$(i\partial_t W_t^*)W_t = -\sqrt{N}ig[a^*(i\partial_t arphi_t) + a(\cdots)ig] + {\sf irrelevant}$$

► For $W_t^* \mathcal{H} W_t$ we use the conjugation formulas and expand. We get terms:

linear in a,
$$a^*$$
 formally $O(N^{1/2})$. quadratic $O(1)$. cubic $O(N^{-1/2})$. quartic $O(N^{-1})$.

► There is no complete cancellation of linear terms in $W_t^* \mathcal{H} W_t$ with $(i\partial_t W_t^*)W_t$. We are left with

$$\sqrt{N} a^* [(N^3 V(N \cdot)(1 - f(N \cdot)) * |\varphi_t|^2)\varphi_t) + \sqrt{N} a(\cdots).$$
 (*)

Conjugation by T_t gives cubic terms, not normal-ordered. Normal-ordering gives linear terms which cancel (*).

Cancellations II

- ▶ Conjugation by T_t gives quartic terms, not normal-ordered. Normal-ordering and using zero-energy scatt. eqn. cancels quadratic terms.
- We are able to prove

$$[i\mathcal{L}_N(t),\mathcal{N}] \leq \mathcal{H} + C_t(\mathcal{N}^2/N + \mathcal{N} + 1).$$

▶ Since $\mathcal{L}_N(t) = \mathcal{H} + \text{other terms}$, we are able to prove

$$\mathcal{H} \leq C_t(\mathcal{L}_N(t) + \mathcal{N}^2/N + \mathcal{N} + 1).$$
 (**)

Thus

$$[i\mathcal{L}_N(t), \mathcal{N}] \leq C_t(\mathcal{L}_N(t) + \mathcal{N}^2/N + \mathcal{N} + 1).$$

Grönwall

▶ Control $\langle \mathcal{N}^2/N \rangle_t$ by $\langle (\mathcal{N}+1)^2/N \rangle_{t=0}$ and $\langle \mathcal{N} \rangle_t$. We get

$$\frac{d}{dt} \langle \mathcal{N} \rangle_t \leq C_t \langle \mathcal{N} + 1 + \mathcal{L}_{\textit{N}}(t) \rangle_t + C_t \langle (\mathcal{N} + 1)^2 / \textit{N} \rangle_{t=0}.$$

▶ To close the scheme, we need to bound $\langle \mathcal{L}_N(t) \rangle_t$. We find

$$\frac{d}{dt}\langle \mathcal{L}_N(t)\rangle_t \leq C_t\langle \mathcal{N}+1+\mathcal{L}_N(t)\rangle_t + C_t\langle (\mathcal{N}+1)^2/N\rangle_{t=0}.$$

Thus, for D_t to be fixed,

$$egin{aligned} rac{d}{dt} \langle D_t(\mathcal{N}+1) + \mathcal{L}_N(t)
angle_t \ & \leq C_t \langle D_t(\mathcal{N}+1) + \mathcal{L}_N(t)
angle_t + C_t \langle (\mathcal{N}+1)^2/N
angle_{t=0}. \end{aligned}$$

Continuing Grönwall...

► Thus, by Grönwall's Lemma,

$$egin{aligned} \langle D_t(\mathcal{N}+1) + \mathcal{L}_{\mathcal{N}}(t)
angle_t \ & \leq C \exp(\textit{C} \exp(\textit{C} t)) \langle \mathcal{L}_{\mathcal{N}}(0) + \mathcal{N} + 1 + \mathcal{N}^2/\textit{N}
angle_{t=0}. \end{aligned}$$

▶ But there exists $C_t > 0$ such that (using (**) and positivity)

$$\mathcal{L}_N(t) + C_t(\mathcal{N}^2/N + \mathcal{N}) \geq 0.$$

Choosing $D_t = C_t + 1$, we obtain

$$\langle \mathcal{N} \rangle_t \leq \langle \mathcal{L}_N(t) + D_t(\mathcal{N}^2/N + N) \rangle_t \leq C \exp(C \exp(Ct)).$$

Thank you for your attention!