Quantitative derivation of the Gross-Pitaevskii equation

Gustavo de Oliveira ${ }^{1}$
Departamento de Matemática
Universidade Federal de São Carlos

December 2014

In collaboration with

Niels Benedikter and Benjamin Schlein
${ }^{1}$ Supported by FAPESP.

This talk is about

- Mathematics of many-body quantum mechanics.
- Dynamics of Bose-Einstein condensates.
- Effective description.
- How the Gross-Pitaevskii PDE emerges.

Wave function for N bosons

- N-particle wave function:

$$
\psi_{N}\left(x_{1}, \ldots, x_{N}, t\right) \in \mathbb{C}, \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{3}, \quad t \in \mathbb{R}
$$

- Square-integrable and normalized:

$$
\psi_{N}(\cdot, t) \in L^{2}\left(\mathbb{R}^{3 N}\right) \quad \text { and } \quad \int_{\mathbb{R}^{3 N}}\left|\psi_{N}(\cdot, t)\right|^{2}=1
$$

- ψ_{N} is symmetric in each pair of variables x_{1}, \ldots, x_{N}.

Density operator

$$
\left|\psi_{N}\right\rangle\left\langle\psi_{N}\right| \quad \text { on } \quad L^{2}\left(\mathbb{R}^{3 N}\right) \simeq L^{2}\left(\mathbb{R}^{3}\right) \otimes \cdots \otimes L^{2}\left(\mathbb{R}^{3}\right) .
$$

Bose-Einstein condensate

In experiments (since 1995)
Trapped cold ($T \sim 10^{-9} \mathrm{~K}$) dilute gas of $N \sim 10^{3}$ bosons.

Heuristically

$$
\begin{aligned}
\psi_{N}\left(x_{1}, \ldots, x_{N}, t_{0}\right) & \simeq \prod_{j=1}^{N} \varphi\left(x_{j}\right) \quad \text { where } \quad \varphi \in L^{2}\left(\mathbb{R}^{3}\right) . \\
\left|\psi_{N}\right\rangle\left\langle\psi_{N}\right| & \simeq|\varphi\rangle\langle\varphi| \otimes \cdots \otimes|\varphi\rangle\langle\varphi| .
\end{aligned}
$$

Condensate states

One-particle reduced density operator

$$
\left|\psi_{N}\right\rangle\left\langle\left.\psi_{N}\right|^{(1)}=\operatorname{Trace}_{2 \rightarrow N} \mid \psi_{N}\right\rangle\left\langle\psi_{N}\right| .
$$

(Integrate out $N-1$ variables of the integral kernel of $\left|\psi_{N}\right\rangle\left\langle\psi_{N}\right|$.)

$$
\left|\psi_{N}\right\rangle\left\langle\left.\psi_{N}\right|^{(1)}\right. \text { plays the role of one-particle wave-function. }
$$

Condensate condition

$$
\operatorname{Tr}\left|\left|\psi_{N}\right\rangle\left\langle\left.\psi_{N}\right|^{(1)}-\mid \varphi\right\rangle\langle\varphi|\right| \leq \frac{C}{N} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty .
$$

Model (which is realistic)

Quantum Hamiltonian in the Gross-Pitaevskii regime

$$
\begin{aligned}
& H_{N}^{\text {trap }}=\sum_{j=1}^{N}\left(-\Delta_{x_{j}}+V_{\text {trap }}\left(x_{j}\right)\right)+\frac{1}{N} \sum_{i<j}^{N} N^{3} V\left(N\left(x_{i}-x_{j}\right)\right) \\
& V_{\text {trap }}(y)=|y|^{2} \quad \text { and } \quad V \geq 0 \text { with compact support. }
\end{aligned}
$$

Very heuristically

$$
\frac{1}{N} N^{3} V(N \cdot) \sim \frac{1}{N} \delta(\cdot) \quad \text { for large } N
$$

models rare but strong collisions.

Time evolution of condensates

Initial condition

$\left.\psi_{N}\right|_{t=0}=\theta_{N}=$ condensate state with correlations (not a product)
We construct initial data Θ in Fock space:

$$
\Theta=W(\sqrt{N} \varphi) T(k) \Omega=\theta_{0} \oplus \theta_{1} \oplus \cdots \oplus \theta_{N} \oplus \cdots \in \bigoplus_{n \geq 0} L_{\text {sym }}^{2}\left(\mathbb{R}^{3 n}\right)
$$

$\Omega=$ finite particle state (e.g. vacuum)
$T(k)=$ Bogoliubov transformation
$k(x, y)=$ integral kernel which models correlations
$W(\sqrt{N} \varphi)=$ Weyl operator
$\varphi(x)=$ one particle state
$\Theta=$ modified coherent state

Schrödinger equation on Fock space

Condensate state reached; traps are turned off

$$
H_{N}=H_{N}^{\text {trap }} \text { with } V_{\text {trap }} \equiv 0 .
$$

Hamiltonian on Fock space

$$
\mathcal{H}=H_{0} \oplus H_{1} \oplus \cdots \oplus H_{N} \oplus \cdots
$$

Time evolution is observed

$$
\left\{\begin{array}{l}
i \partial_{t} \Psi=\mathcal{H} \Psi \\
\left.\Psi\right|_{t=0}=W(\sqrt{N} \varphi) T(k) \Omega
\end{array} \quad \text { as } \quad N \rightarrow \infty .\right.
$$

Theorem [Benedikter, deO, Schlein, CPAM 2014]

Reasonable hypothesis on $V \geq 0, \varphi, \Omega$.
Consider the solution

$$
\Psi=e^{-i \mathcal{H} t} W(\sqrt{N} \varphi) T(k) \Omega
$$

Let

$$
\Gamma_{N, t}^{(1)}=\text { one-particle reduced operator of } \Psi .
$$

Then

$$
\left.\operatorname{Tr}\left|\Gamma_{N, t}^{(1)}-\right| \varphi\right\rangle\langle\varphi| \left\lvert\, \leq C \exp (C \exp (C|t|)) \frac{1}{\sqrt{N}}\right.
$$

for all t and N, where φ_{t} solves (time-dep. Gross-Pitaevskii eqn.)

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+8 \pi a_{0}\left|\varphi_{t}\right|^{2} \varphi_{t} \quad \text { with }\left.\quad \varphi_{t}\right|_{t=0}=\varphi
$$

$a_{0}>0$ (scattering length of V).

Remarks

Based on

- Hepp '74, Ginibre-Velo '79, Rodnianski-Schlein '09,...

Previous results

- Spohn '80, Erdös-Schlein-Yau '06, Pickl '10,... (no rate of convergence)

Other results

- Adami-Golse-Teta '07, Grillakis-Machedon-Margetis '10,...

Large bibliography...
Look at arXiv:1208.0373 and Schlein's notes arXiv:1210.1603.

Thank you for your attention!

