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Introduction: An example from classical physics

Kinetic theory of a gas of N particles
I Microscopic theory. Newtons’s equations for the trajectories

(x1, x2, . . . , xN) of N particles:

ẋj = vj

v̇j = −
N∑

i 6=j
∇V (xj − xi ).

Here xj = xj(t) and V is a short range potential.



Introduction: An example from classical physics

Kinetic theory of gas of N particles
I Macroscopic theory. Boltzmann’s equation for the density of

particles f = f (x , v , t) at time t:

∂t f + v · ∇x f =
∫
R3

dv ′
∫

S2
dω B(v − v ′, ω)

× [f (x , vout , t)f (x , v ′out , t)− f (x , v , t)f (x , v ′, t)].

Incoming particles with v and v ′ collide. Outcoming with

vout = v + ω · (v ′ − v)ω,
v ′out = v ′ − ω · (v ′ − v)ω.

Here B(v − v ′, ω) is proportional do the cross section.



Introduction: An example from classical physics

Kinetic theory of gas of N particles
I Scaling limit. Boltzmann’s equation becomes correct in the

Boltzmann-Grad limit:

density ρ→ 0, N →∞, Nρ2 = const.

I Mathematical derivation. Lanford (’75) proved: In the
Boltzmann-Grad limit, Boltzmann’s equation follows from
Newton’s equation (at least for short times).

I Extensions. Later, to a larger class of potentials V .



As the above example illustrates

Typical steps in a derivation program
I Microscopic theory. Physical law; Many degrees of freedom;

Arbitrary initial data; Detailed solutions: impractical or not
very useful.

I Scaling limit. Appropriate regime of parameters.
I Macroscopic theory. Statistical description; Effective theory

(or equation); Restricted initial data (possibly).
I Mathematical results. Detailed analysis of the problem.
I Extensions. Less regular interactions; More general initial

data.



An example from quantum theory

I Thomas-Fermi theory for large atoms and molecules.
Neutral quantum system of N electrons and M nuclei.
Ground state energy:

E (N) = inf 〈ψ,HNψ〉.

For large N:

E (N) ≈ ETF (N) = inf {ETF (ρ) | ∫ dx |ρ(x)| = N},

where ETF (ρ) is the Thomas-Fermi functional.

Theorem (Lieb-Simon ’77). Approximation becomes exact
as N →∞.



Main background reference for this talk

N. Benedikter, M. Porta and B. Schlein (2016).

The references for the work that we mention can be found there.



Plan

1. Introduction (completed)
2. One-component Bose gases (easier to explain)
3. Two-component Bose gases (similar)



Wave function for N Bosonic particles

I N-particle wave function:

ψt(x1, . . . , xN) ∈ C, x1, . . . , xN ∈ R3, t ∈ R.

I Square-integrable and normalized:

ψt ∈ L2(R3N) ' L2(R3)⊗ · · · ⊗ L2(R3),∫
R3N
|ψt |2 = 1.

I |ψt |2 probability density.
I ψt is symmetric in each pair of variables x1, . . . , xN .



Density operator

N-particle

γψt = |ψt〉〈ψt | on L2(R3N).

Tr γψt = 1, ‖γψt‖ := Tr |γψt |.

1-particle

γ
(1)
ψt

= Tr2→N γψt on L2(R3).

Tr2→N Integrate out N − 1 variables of the integral
kernel of γψt .

γ
(1)
ψt

1-particle marginal: Plays the role of 1-particle
wave-function.



Bose-Einstein condensation

In experiments, since 1995 (Nobel Prize 2001)

Trapped cold (T ∼ 10−9K ) dilute gas of N ∼ 103 Bosons.

Heuristically

ψt(x1, . . . , xN) '
N∏

j=1
ϕt(xj) where ϕt ∈ L2(R3).

γψt ' |ϕt〉〈ϕt | ⊗ · · · ⊗ |ϕt〉〈ϕt |.

Mathematically

Tr
∣∣ γ(1)
ψt
− |ϕt〉〈ϕt |

∣∣ = 0.



Models

Quantum Hamiltonian in the mean-field regime

Htrap
N =

N∑
j=1

(
−∆xj + Vtrap(xj)

)
+ 1

N

N∑
i<j

V (xi − xj),

Quantum Hamiltonian in the Gross-Pitaevskii regime

Htrap
N =

N∑
j=1

(
−∆xj + Vtrap(xj)

)
+ 1

N

N∑
i<j

N3V (N(xi − xj)),

Vtrap(y) = |y |2 and V ≥ 0, V (x) = V (|x |), compact supp.



Basic problems

Ground state energy

E (N) = inf 〈ψ,Htrap
N ψ〉 = inf spec Htrap

N .

Initial value problem

HN = (Htrap
N with Vtrap = 0)

i∂tψt = HNψt

ψt=0 = ψ.



In the mean-field regime
Expect:
I Approximate factorization of condensate ψt for large N

=⇒
I Approximate independence of particles

=⇒ (by the Law of Large Numbers)

Potential experienced by the jth particle

= 1
N

N∑
i<j

V (xi − xj) '
∫

dy V (xj − y)|ϕt(y)|2

= (V ∗ |ϕt |2)(xj).

=⇒ (separation of variables)
I The Schrödinger equation should factor into products

i∂tϕt = −∆ϕt + V ∗ |ϕt |2ϕt .



In the Gross-Pitaevskii regime

Very heuristically

1
N N3V (N · ) ∼ 1

N δ(·) for large N

models rare but strong collisions.

In this talk, we focus on mean-field.

We may skip the slides about Gross-Pitaevskii.



Time-independent theory

Mean-field regime
Ground state energy per particle:

lim
N→∞

1
N inf spec Htrap

N = min{EMF (ϕ) |ϕ ∈ L2(R3), ‖ϕ‖ = 1}

where

EMF (ϕ) =
∫ (
|∇ϕ|2 + Vtrap|ϕ|2 + 1

2(V ∗ |ϕ|2)|ϕ|2
)
.

The minimizer ϕMF of EMF obeys

Tr
∣∣∣ γ(1)
ψgs − |ϕMF 〉〈ϕMF |

∣∣∣→ 0 as N →∞.

(Modern proof: Lewin-Nam-Rougerie (’14))



Time-independent theory

Gross-Pitaevski regime
Ground state energy per particle:

lim
N→∞

1
N inf spec Htrap

N = min{EGP(ϕ) |ϕ ∈ L2(R3), ‖ϕ‖ = 1}

where
EGP(ϕ) =

∫ (
|∇ϕ|2 + Vtrap|ϕ|2 + 4πa|ϕ|4

)
.

The minimizer ϕGP of EGP obeys

Tr
∣∣∣ γ(1)
ψgs − |ϕGP〉〈ϕGP |

∣∣∣→ 0 as N →∞.

(Lieb-Seiringer-Yngvason (’00))



Fock space

F = C⊕
⊕
n≥1

L2
sym(R3n).

State ψ ∈ F :

ψ = ψ0 ⊕ ψ1 ⊕ ψ2 ⊕ · · · ⊕ ψN ⊕ · · ·

Vacuum state Ω ∈ F :

Ω = 1⊕ 0⊕ 0⊕ · · ·

N number of particles operator on F :

(Nψ)n = nψn.

For example 〈Ω,NΩ〉 = 0.



Time evolution of condensates — Initial data

Product state in L2
sym(R3N)

ψt=0 = ϕ⊗N .

Coherent state in F

Ψt=0 = W (
√

Nϕ) Ω

= e−N‖ϕ‖2/2
[

1⊕ ϕ⊕ ϕ⊗2
√

2!
⊕ ϕ⊗3
√

3!
⊕ · · · ⊕ ϕ⊗N

√
N!
⊕ · · ·

]
We have

〈Ψt=0,NΨt=0〉 = N.



Schrödinger equation on Fock space

Condensate state reached – Traps are turned off

HN = (Htrap
N with Vtrap = 0).

Hamiltonian on Fock space

H = H0 ⊕ H1 ⊕ · · · ⊕ HN ⊕ · · ·

Time evolution is observed{
i∂tΨt = HΨt

Ψt=0 = Ψ
as N →∞.



Mean-field regime

Theorem (Rodnianski-Schlein, CMP ’09)
Consider the solution

Ψt = e−iHtW (
√

Nϕ)Ω.

Let
Γ(1)

t = one-particle reduced density operator of Ψt .

Then
Tr
∣∣∣ Γ(1)

t − |ϕt〉〈ϕt |
∣∣∣ ≤ C exp(C |t|) 1

N
for all t and N, where ϕt solves (time-dep. Hartree eqn.)

i∂tϕt = −∆ϕt + (V ∗ |ϕt |2)ϕt with ϕ0 = ϕ.



Gross-Pitaevskii regime

Theorem (Benedikter–de Oliveira–Schlein, CPAM ’14)]
Consider the solution

Ψt = e−iHtW (
√

Nϕ)T (k)Ω.

Let
Γ(1)

t = one-particle reduced density operator of Ψt .

Then
Tr
∣∣∣ Γ(1)

t − |ϕt〉〈ϕt |
∣∣∣ ≤ C exp(C exp(C |t|)) 1√

N
for all t and N, where ϕt solves (time-dep. Gross-Pitaevskii eqn.)

i∂tϕt = −∆ϕt + 8πa|ϕt |2ϕt with ϕ0 = ϕ,

a > 0 (scattering length of V ).



Two-component condensate

State space
L2(R3N1)⊗ L2(R3N2).

Hamiltonian (in the mean-field regime)

HN1,N2 = hN1 ⊗ I + I ⊗ hN2 + VN1,N2

where

hNp =
Np∑
j=1
−∆xj + 1

Np

Np∑
i<j

Vp(xi − xj)

and

VN1,N2 = 1
N1 + N2

N1∑
j=1

N2∑
k=1

V12(xj − yk).



Two-component condensate

(1,1)-particle density operator

γ(1,1) = TrN1−1,N2−1|ψt〉〈ψt | on L2(R3)⊗ L2(R3).

We embed our model into

F ⊗ F .

Hamiltonian
H = H1 +H2 + V.

Initial data

Ψt=0 = W (
√

N1u)Ω⊗W (
√

N2v)Ω.



Two-component condensate

Theorem (de Oliveira-Michelangeli, RMP ’19)
Consider the solution

Ψt = e−iHt [W (
√

N1u)Ω⊗W (
√

N2v)Ω].

Let Γ(1,1)
t = (1,1)-particle reduced density operator of Ψt . Then

Tr
∣∣∣ Γ(1,1)

t − |ut ⊗ vt〉〈ut ⊗ vt |
∣∣∣ ≤ C exp(C |t|)

[ 1√
N1

+ 1√
N2

]
for all t, N1 and N, where ut and vt solve (time-dep. Hartree sys.)

i∂tut = −∆ut + (V1 ∗ |ut |2)ut + c2(V12 ∗ |vt |2)ut ,

i∂tvt = −∆vt + (V2 ∗ |vt |2)vt + c1(V12 ∗ |ut |2)vt

with ut=0 = u and vt=0 = v where cj = limN1,N2→∞Nj/(N1 + N2).



Two-component condensate

Remarks
I Similar results for fixed number of particles (i.e. not in Fock

space) can be found in Anapolitanos-Hott-Hundertmark, RMP
’17 and Michelangeli-Olgiati, Anal. Math. Phys. ’17.

I For fixed number of particles, the corresponding
time-independent result (ground state energy per particle) can
be found in Michelangeli-Nam-Olgiati RMP ’18.

I Our proofs are based on the methods developed in
Rodnianski-Schlein CMP ’09.



Outline of the proof

In the one-component case.

The two-component case is similar.



Creation and annihilation operators on Fock space

f ∈ L2(R3) and ψ in Fock space:

(a∗(f )ψ)n(x1, . . . , xn)

= 1√
n

n∑
j=1

f (xj)ψn−1(x1, . . . , xj−1, xj+1, . . . , xn),

(a(f )ψ)n(x1, . . . , xn) =
√

n + 1
∫

dy f (y)ψn+1(y , x1, . . . , xn).

Commutation relations

[a(f ), a∗(g)] = 〈f , g〉, [a(f ), a(g)] = [a∗(f ), a∗(g)] = 0.



Operator-valued distributions

ax , a∗x , x ∈ R3:

a∗(f ) =
∫

dx f (x)a∗x and a(f ) =
∫

dx f (x)ax .

Commutation relations

[ax , a∗y ] = δ(x − y) and [ax , ay ] = [a∗x , a∗y ] = 0.



Operators on Fock space

N =
∫

dx a∗xax ,

H =
∫

dx ∇xa∗x∇xax + 1
2N

∫
dxdy V (x − y)a∗xa∗y ay ax ,

W (f ) = exp(a∗(f )− a(f )),



Conjugation formulas

Weyl operator W (f ):

W ∗(f )a∗xW (f ) = a∗x + f (x), W ∗(f )axW (f ) = ax + f (x),



Fluctuation dynamics

Integral kernel of Γ(1)
t − |ϕt〉〈ϕt |:

Γ(1)
N,t(x , y)− ϕt(y)ϕt(x) =

〈Ψt , a∗y ax Ψt〉
〈Ψt ,NΨt〉

− ϕt(y)ϕt(x).

We want to approximate

Ψt = e−iHtW (
√

Nϕ)Ω 'W (
√

Nϕt)Ω.

Define
UN(t) = W ∗(

√
Nϕt)e−iHtW (

√
Nϕ).

We find the estimate

Tr
∣∣∣ Γ(1)

N,t − |ϕt〉〈ϕt |
∣∣∣ ≤ C√

N
〈UN(t)Ω,NUN(t)Ω〉.



Controlling the number of fluctuations

We are left to prove that 〈N〉t := 〈UN(t)Ω,NUN(t)Ω〉 ≤ C where

i∂tUN(t) = LN(t)UN(t).

Explicitly (using shorthands)

LN(t) = (i∂tW ∗
t )Wt + W ∗

t HWt .

To use Grönwall’s Lemma, we compute

d
dt 〈N〉t = 〈[iLN(t),N ]〉t (notation 〈 · 〉t)



Cancellation

I We have

(i∂tW ∗
t )Wt = −

√
N
[
a∗(i∂tϕt) + a(· · · )

]
+ irrelevant

I For W ∗
t HWt we use the conjugation formulas and expand.

We get terms:
linear in a, a∗ formally O(N1/2).
quadratic O(1).
cubic O(N−1/2).
quartic O(N−1).

I There is complete cancellation of linear terms in W ∗
t HWt

with (i∂tW ∗
t )Wt :

linear in W ∗
t HWt

=
√

N a∗
[
−∆ϕt + (V ∗ |ϕt |2)ϕt

]
+
√

Na(· · · ).



Grönwall

I We are able to prove

〈[iLN(t),N ]〉t ≤ C〈N + 1〉t .

I Hence
d
dt 〈N〉t ≤ C〈N + 1〉t .

I Using Grönwall’s Lemma, we obtain

〈N〉t ≤ C exp(C |t|).



Thank you for your attention!


