Effective equations for two-component Bose-Einstein Condensates

Gustavo de Oliveira

Departamento de Matemática
Universidade Federal de Minas Gerais
June 2019

Introduction: An example from classical physics

Kinetic theory of a gas of N particles

- Microscopic theory. Newtons's equations for the trajectories $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ of N particles:

$$
\begin{aligned}
\dot{x}_{j} & =v_{j} \\
\dot{v}_{j} & =-\sum_{i \neq j}^{N} \nabla V\left(x_{j}-x_{i}\right) .
\end{aligned}
$$

Here $x_{j}=x_{j}(t)$ and V is a short range potential.

Introduction: An example from classical physics

Kinetic theory of gas of N particles

- Macroscopic theory. Boltzmann's equation for the density of particles $f=f(x, v, t)$ at time t :

$$
\begin{aligned}
\partial_{t} f+ & v \cdot \nabla_{x} f=\int_{\mathbb{R}^{3}} d v^{\prime} \int_{S^{2}} d \omega B\left(v-v^{\prime}, \omega\right) \\
& \times\left[f\left(x, v_{\text {out }}, t\right) f\left(x, v_{\text {out }}^{\prime}, t\right)-f(x, v, t) f\left(x, v^{\prime}, t\right)\right]
\end{aligned}
$$

Incoming particles with v and v^{\prime} collide. Outcoming with

$$
\begin{aligned}
v_{\text {out }} & =v+\omega \cdot\left(v^{\prime}-v\right) \omega, \\
v_{\text {out }}^{\prime} & =v^{\prime}-\omega \cdot\left(v^{\prime}-v\right) \omega .
\end{aligned}
$$

Here $B\left(v-v^{\prime}, \omega\right)$ is proportional do the cross section.

Introduction: An example from classical physics

Kinetic theory of gas of N particles

- Scaling limit. Boltzmann's equation becomes correct in the Boltzmann-Grad limit:

$$
\text { density } \rho \rightarrow 0, \quad N \rightarrow \infty, \quad N \rho^{2}=\text { const. }
$$

- Mathematical derivation. Lanford ('75) proved: In the Boltzmann-Grad limit, Boltzmann's equation follows from Newton's equation (at least for short times).
- Extensions. Later, to a larger class of potentials V.

As the above example illustrates

Typical steps in a derivation program

- Microscopic theory. Physical law; Many degrees of freedom; Arbitrary initial data; Detailed solutions: impractical or not very useful.
- Scaling limit. Appropriate regime of parameters.
- Macroscopic theory. Statistical description; Effective theory (or equation); Restricted initial data (possibly).
- Mathematical results. Detailed analysis of the problem.
- Extensions. Less regular interactions; More general initial data.

An example from quantum theory

- Thomas-Fermi theory for large atoms and molecules. Neutral quantum system of N electrons and M nuclei. Ground state energy:

$$
E(N)=\inf \left\langle\psi, H_{N} \psi\right\rangle .
$$

For large N :

$$
E(N) \approx E_{T F}(N)=\inf \left\{\mathcal{E}_{T F}(\rho)\left|\int d x\right| \rho(x) \mid=N\right\}
$$

where $\mathcal{E}_{T F}(\rho)$ is the Thomas-Fermi functional.

Theorem (Lieb-Simon '77). Approximation becomes exact as $N \rightarrow \infty$.

Main background reference for this talk

N. Benedikter, M. Porta and B. Schlein (2016).

The references for the work that we mention can be found there.

Plan

1. Introduction (completed)
2. One-component Bose gases (easier to explain)
3. Two-component Bose gases (similar)

Wave function for N Bosonic particles

- N-particle wave function:

$$
\psi_{t}\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{C}, \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{3}, \quad t \in \mathbb{R}
$$

- Square-integrable and normalized:

$$
\begin{gathered}
\psi_{t} \in L^{2}\left(\mathbb{R}^{3 N}\right) \simeq L^{2}\left(\mathbb{R}^{3}\right) \otimes \cdots \otimes L^{2}\left(\mathbb{R}^{3}\right) \\
\int_{\mathbb{R}^{3 N}}\left|\psi_{t}\right|^{2}=1
\end{gathered}
$$

- $\left|\psi_{t}\right|^{2}$ probability density.
- ψ_{t} is symmetric in each pair of variables x_{1}, \ldots, x_{N}.

Density operator

N-particle

$$
\begin{gathered}
\gamma_{\psi_{t}}=\left|\psi_{t}\right\rangle\left\langle\psi_{t}\right| \quad \text { on } \quad L^{2}\left(\mathbb{R}^{3 N}\right) \\
\operatorname{Tr} \gamma_{\psi_{t}}=1, \quad\left\|\gamma_{\psi_{t}}\right\|:=\operatorname{Tr}\left|\gamma_{\psi_{t}}\right|
\end{gathered}
$$

1-particle

$$
\gamma_{\psi_{t}}^{(1)}=\operatorname{Tr}_{2 \rightarrow N} \gamma_{\psi_{t}} \quad \text { on } \quad L^{2}\left(\mathbb{R}^{3}\right)
$$

$\operatorname{Tr}_{2 \rightarrow N}$ Integrate out $N-1$ variables of the integral kernel of $\gamma_{\psi_{t}}$.
$\gamma_{\psi_{t}}^{(1)}$ 1-particle marginal: Plays the role of 1-particle wave-function.

Bose-Einstein condensation

In experiments, since 1995 (Nobel Prize 2001)
Trapped cold ($T \sim 10^{-9} \mathrm{~K}$) dilute gas of $N \sim 10^{3}$ Bosons.

Heuristically

$$
\begin{aligned}
\psi_{t}\left(x_{1}, \ldots, x_{N}\right) & \simeq \prod_{j=1}^{N} \varphi_{t}\left(x_{j}\right) \quad \text { where } \quad \varphi_{t} \in L^{2}\left(\mathbb{R}^{3}\right) \\
\gamma_{\psi_{t}} & \simeq\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \otimes \cdots \otimes\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right|
\end{aligned}
$$

Mathematically

$$
\left.\operatorname{Tr}\left|\gamma_{\psi_{t}}^{(1)}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \mid=0
$$

Models

Quantum Hamiltonian in the mean-field regime

$$
H_{N}^{\text {trap }}=\sum_{j=1}^{N}\left(-\Delta_{x_{j}}+V_{\text {trap }}\left(x_{j}\right)\right)+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right),
$$

Quantum Hamiltonian in the Gross-Pitaevskii regime

$$
\begin{gathered}
H_{N}^{\text {trap }}=\sum_{j=1}^{N}\left(-\Delta_{x_{j}}+V_{\text {trap }}\left(x_{j}\right)\right)+\frac{1}{N} \sum_{i<j}^{N} N^{3} V\left(N\left(x_{i}-x_{j}\right)\right), \\
V_{\text {trap }}(y)=|y|^{2} \quad \text { and } \quad V \geq 0, V(x)=V(|x|), \text { compact supp. }
\end{gathered}
$$

Basic problems

Ground state energy

$$
E(N)=\inf \left\langle\psi, H_{N}^{\text {trap }} \psi\right\rangle=\inf \operatorname{spec} H_{N}^{\text {trap }} .
$$

Initial value problem

$$
\begin{gathered}
H_{N}=\left(H_{N}^{\text {trap }} \text { with } V_{\text {trap }}=0\right) \\
i \partial_{t} \psi_{t}=H_{N} \psi_{t} \\
\psi_{t=0}=\psi .
\end{gathered}
$$

In the mean-field regime

Expect:

- Approximate factorization of condensate ψ_{t} for large N \Longrightarrow
- Approximate independence of particles
\Longrightarrow (by the Law of Large Numbers)
Potential experienced by the j th particle

$$
\begin{aligned}
=\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right) & \simeq \int d y V\left(x_{j}-y\right)\left|\varphi_{t}(y)\right|^{2} \\
& =\left(V *\left|\varphi_{t}\right|^{2}\right)\left(x_{j}\right) .
\end{aligned}
$$

\Longrightarrow (separation of variables)

- The Schrödinger equation should factor into products

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+V *\left|\varphi_{t}\right|^{2} \varphi_{t}
$$

In the Gross-Pitaevskii regime

Very heuristically

$$
\frac{1}{N} N^{3} V(N \cdot) \sim \frac{1}{N} \delta(\cdot) \quad \text { for large } N
$$

models rare but strong collisions.
In this talk, we focus on mean-field.
We may skip the slides about Gross-Pitaevskii.

Time-independent theory

Mean-field regime
Ground state energy per particle:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \inf \operatorname{spec} H_{N}^{\text {trap }}=\min \left\{\mathcal{E}_{M F}(\varphi) \mid \varphi \in L^{2}\left(\mathbb{R}^{3}\right),\|\varphi\|=1\right\}
$$

where

$$
\mathcal{E}_{M F}(\varphi)=\int\left(|\nabla \varphi|^{2}+V_{\text {trap }}|\varphi|^{2}+\frac{1}{2}\left(V *|\varphi|^{2}\right)|\varphi|^{2}\right) .
$$

The minimizer $\varphi_{M F}$ of $\mathcal{E}_{M F}$ obeys

$$
\left.\operatorname{Tr}\left|\gamma_{\psi \mathrm{gs}}^{(1)}-\right| \varphi_{M F}\right\rangle\left\langle\varphi_{M F}\right| \mid \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

(Modern proof: Lewin-Nam-Rougerie ('14))

Time-independent theory

Gross-Pitaevski regime
Ground state energy per particle:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \inf \operatorname{spec} H_{N}^{\text {trap }}=\min \left\{\mathcal{E}_{G P}(\varphi) \mid \varphi \in L^{2}\left(\mathbb{R}^{3}\right),\|\varphi\|=1\right\}
$$

where

$$
\mathcal{E}_{G P}(\varphi)=\int\left(|\nabla \varphi|^{2}+V_{\text {trap }}|\varphi|^{2}+4 \pi a|\varphi|^{4}\right) .
$$

The minimizer $\varphi_{G P}$ of $\mathcal{E}_{G P}$ obeys

$$
\left.\operatorname{Tr}\left|\gamma_{\psi \psi_{s}^{s s}}^{(1)}-\right| \varphi_{G P}\right\rangle\left\langle\varphi_{G P}\right| \mid \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty .
$$

(Lieb-Seiringer-Yngvason ('00))

Fock space

$$
\mathcal{F}=\mathbb{C} \oplus \bigoplus_{n \geq 1} L_{\text {sym }}^{2}\left(\mathbb{R}^{3 n}\right)
$$

State $\psi \in \mathcal{F}$:

$$
\psi=\psi_{0} \oplus \psi_{1} \oplus \psi_{2} \oplus \cdots \oplus \psi_{N} \oplus \cdots
$$

Vacuum state $\Omega \in \mathcal{F}$:

$$
\Omega=1 \oplus 0 \oplus 0 \oplus \cdots
$$

\mathcal{N} number of particles operator on \mathcal{F} :

$$
(\mathcal{N} \psi)_{n}=n \psi_{n}
$$

For example $\langle\Omega, \mathcal{N} \Omega\rangle=0$.

Time evolution of condensates - Initial data

Product state in $L_{\text {sym }}^{2}\left(\mathbb{R}^{3 N}\right)$

$$
\psi_{t=0}=\varphi^{\otimes N}
$$

Coherent state in \mathcal{F}

$$
\begin{aligned}
\Psi_{t=0} & =W(\sqrt{N} \varphi) \Omega \\
& =e^{-N\|\varphi\|^{2} / 2}\left[1 \oplus \varphi \oplus \frac{\varphi^{\otimes 2}}{\sqrt{2!}} \oplus \frac{\varphi^{\otimes 3}}{\sqrt{3!}} \oplus \cdots \oplus \frac{\varphi^{\otimes N}}{\sqrt{N!}} \oplus \cdots\right]
\end{aligned}
$$

We have

$$
\left\langle\Psi_{t=0}, \mathcal{N} \Psi_{t=0}\right\rangle=N
$$

Schrödinger equation on Fock space

Condensate state reached - Traps are turned off

$$
H_{N}=\left(H_{N}^{\text {trap }} \text { with } V_{\text {trap }}=0\right) .
$$

Hamiltonian on Fock space

$$
\mathcal{H}=H_{0} \oplus H_{1} \oplus \cdots \oplus H_{N} \oplus \cdots
$$

Time evolution is observed

$$
\left\{\begin{array}{l}
i \partial_{t} \Psi_{t}=\mathcal{H} \Psi_{t} \quad \text { as } \quad N \rightarrow \infty . \\
\Psi_{t=0}=\psi
\end{array}\right.
$$

Mean-field regime

Theorem (Rodnianski-Schlein, CMP '09)
Consider the solution

$$
\Psi_{t}=e^{-i \mathcal{H} t} W(\sqrt{N} \varphi) \Omega
$$

Let

$$
\Gamma_{t}^{(1)}=\text { one-particle reduced density operator of } \Psi_{t}
$$

Then

$$
\left.\operatorname{Tr}\left|\Gamma_{t}^{(1)}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq C \exp (C|t|) \frac{1}{N}\right.
$$

for all t and N, where φ_{t} solves (time-dep. Hartree eqn.)

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+\left(V *\left|\varphi_{t}\right|^{2}\right) \varphi_{t} \quad \text { with } \quad \varphi_{0}=\varphi
$$

Gross-Pitaevskii regime

Theorem (Benedikter-de Oliveira-Schlein, CPAM '14)]

Consider the solution

$$
\Psi_{t}=e^{-i \mathcal{H} t} W(\sqrt{N} \varphi) T(k) \Omega
$$

Let

$$
\Gamma_{t}^{(1)}=\text { one-particle reduced density operator of } \Psi_{t} .
$$

Then

$$
\left.\operatorname{Tr}\left|\Gamma_{t}^{(1)}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq C \exp (C \exp (C|t|)) \frac{1}{\sqrt{N}}\right.
$$

for all t and N, where φ_{t} solves (time-dep. Gross-Pitaevskii eqn.)

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+8 \pi a\left|\varphi_{t}\right|^{2} \varphi_{t} \quad \text { with } \quad \varphi_{0}=\varphi
$$

$a>0$ (scattering length of V).

Two-component condensate

State space

$$
L^{2}\left(\mathbb{R}^{3 N_{1}}\right) \otimes L^{2}\left(\mathbb{R}^{3 N_{2}}\right)
$$

Hamiltonian (in the mean-field regime)

$$
H_{N_{1}, N_{2}}=h_{N_{1}} \otimes I+I \otimes h_{N_{2}}+\mathcal{V}_{N_{1}, N_{2}}
$$

where

$$
h_{N_{p}}=\sum_{j=1}^{N_{p}}-\Delta_{x_{j}}+\frac{1}{N_{p}} \sum_{i<j}^{N_{p}} V_{p}\left(x_{i}-x_{j}\right)
$$

and

$$
\mathcal{V}_{N_{1}, N_{2}}=\frac{1}{N_{1}+N_{2}} \sum_{j=1}^{N_{1}} \sum_{k=1}^{N_{2}} V_{12}\left(x_{j}-y_{k}\right)
$$

Two-component condensate

(1,1)-particle density operator

$$
\gamma^{(1,1)}=\operatorname{Tr}_{N_{1}-1, N_{2}-1}\left|\psi_{t}\right\rangle\left\langle\psi_{t}\right| \quad \text { on } \quad L^{2}\left(\mathbb{R}^{3}\right) \otimes L^{2}\left(\mathbb{R}^{3}\right) .
$$

We embed our model into

$$
\mathcal{F} \otimes \mathcal{F} .
$$

Hamiltonian

$$
\mathcal{H}=\mathcal{H}_{1}+\mathcal{H}_{2}+\mathcal{V}
$$

Initial data

$$
\Psi_{t=0}=W\left(\sqrt{N_{1}} u\right) \Omega \otimes W\left(\sqrt{N_{2}} v\right) \Omega
$$

Two-component condensate

Theorem (de Oliveira-Michelangeli, RMP '19)

Consider the solution

$$
\Psi_{t}=e^{-i \mathcal{H} t}\left[W\left(\sqrt{N_{1}} u\right) \Omega \otimes W\left(\sqrt{N_{2}} v\right) \Omega\right]
$$

Let $\Gamma_{t}^{(1,1)}=(1,1)$-particle reduced density operator of Ψ_{t}. Then

$$
\left.\operatorname{Tr}\left|\Gamma_{t}^{(1,1)}-\right| u_{t} \otimes v_{t}\right\rangle\left\langle u_{t} \otimes v_{t}\right| \left\lvert\, \leq C \exp (C|t|)\left[\frac{1}{\sqrt{N_{1}}}+\frac{1}{\sqrt{N_{2}}}\right]\right.
$$

for all t, N_{1} and N, where u_{t} and v_{t} solve (time-dep. Hartree sys.)

$$
\begin{aligned}
& i \partial_{t} u_{t}=-\Delta u_{t}+\left(V_{1} *\left|u_{t}\right|^{2}\right) u_{t}+c_{2}\left(V_{12} *\left|v_{t}\right|^{2}\right) u_{t} \\
& i \partial_{t} v_{t}=-\Delta v_{t}+\left(V_{2} *\left|v_{t}\right|^{2}\right) v_{t}+c_{1}\left(V_{12} *\left|u_{t}\right|^{2}\right) v_{t}
\end{aligned}
$$

with $u_{t=0}=u$ and $v_{t=0}=v$ where $c_{j}=\lim _{N_{1}, N_{2} \rightarrow \infty} N_{j} /\left(N_{1}+N_{2}\right)$.

Two-component condensate

Remarks

- Similar results for fixed number of particles (i.e. not in Fock space) can be found in Anapolitanos-Hott-Hundertmark, RMP '17 and Michelangeli-Olgiati, Anal. Math. Phys. '17.
- For fixed number of particles, the corresponding time-independent result (ground state energy per particle) can be found in Michelangeli-Nam-Olgiati RMP '18.
- Our proofs are based on the methods developed in Rodnianski-Schlein CMP '09.

Outline of the proof

In the one-component case.

The two-component case is similar.

Creation and annihilation operators on Fock space

$f \in L^{2}\left(\mathbb{R}^{3}\right)$ and ψ in Fock space:

$$
\begin{aligned}
& \left(a^{*}(f) \psi\right)_{n}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f\left(x_{j}\right) \psi_{n-1}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right), \\
& (a(f) \psi)_{n}\left(x_{1}, \ldots, x_{n}\right)=\sqrt{n+1} \int d y f(y) \psi_{n+1}\left(y, x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Commutation relations

$$
\left[a(f), a^{*}(g)\right]=\langle f, g\rangle, \quad[a(f), a(g)]=\left[a^{*}(f), a^{*}(g)\right]=0 .
$$

Operator-valued distributions

$a_{x}, a_{x}^{*}, x \in \mathbb{R}^{3}$:

$$
a^{*}(f)=\int d x f(x) a_{x}^{*} \quad \text { and } \quad a(f)=\int d x \overline{f(x)} a_{x} .
$$

Commutation relations

$$
\left[a_{x}, a_{y}^{*}\right]=\delta(x-y) \quad \text { and } \quad\left[a_{x}, a_{y}\right]=\left[a_{x}^{*}, a_{y}^{*}\right]=0 .
$$

Operators on Fock space

$$
\begin{gathered}
\mathcal{N}=\int d x a_{x}^{*} a_{x} \\
\mathcal{H}=\int d x \nabla_{x} a_{x}^{*} \nabla_{x} a_{x}+\frac{1}{2 N} \int d x d y V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x} \\
W(f)=\exp \left(a^{*}(f)-a(f)\right)
\end{gathered}
$$

Conjugation formulas

Weyl operator $W(f)$:

$$
W^{*}(f) a_{x}^{*} W(f)=a_{x}^{*}+\overline{f(x)}, \quad W^{*}(f) a_{x} W(f)=a_{x}+f(x)
$$

Fluctuation dynamics

Integral kernel of $\Gamma_{t}^{(1)}-\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right|$:

$$
\Gamma_{N, t}^{(1)}(x, y)-\overline{\varphi_{t}(y)} \varphi_{t}(x)=\frac{\left\langle\Psi_{t}, a_{y}^{*} a_{x} \Psi_{t}\right\rangle}{\left\langle\Psi_{t}, \mathcal{N} \Psi_{t}\right\rangle}-\overline{\varphi_{t}(y)} \varphi_{t}(x)
$$

We want to approximate

$$
\Psi_{t}=e^{-i \mathcal{H} t} W(\sqrt{N} \varphi) \Omega \simeq W\left(\sqrt{N} \varphi_{t}\right) \Omega
$$

Define

$$
U_{N}(t)=W^{*}\left(\sqrt{N} \varphi_{t}\right) e^{-i \mathcal{H} t} W(\sqrt{N} \varphi)
$$

We find the estimate

$$
\left.\operatorname{Tr}\left|\Gamma_{N, t}^{(1)}-\right| \varphi_{t}\right\rangle\left\langle\varphi_{t}\right| \left\lvert\, \leq \frac{C}{\sqrt{N}}\left\langle U_{N}(t) \Omega, \mathcal{N} U_{N}(t) \Omega\right\rangle\right.
$$

Controlling the number of fluctuations

We are left to prove that $\langle\mathcal{N}\rangle_{t}:=\left\langle U_{N}(t) \Omega, \mathcal{N} U_{N}(t) \Omega\right\rangle \leq C$ where

$$
i \partial_{t} U_{N}(t)=\mathcal{L}_{N}(t) U_{N}(t)
$$

Explicitly (using shorthands)

$$
\mathcal{L}_{N}(t)=\left(i \partial_{t} W_{t}^{*}\right) W_{t}+W_{t}^{*} \mathcal{H} W_{t} .
$$

To use Grönwall's Lemma, we compute

$$
\frac{d}{d t}\langle\mathcal{N}\rangle_{t}=\left\langle\left[i \mathcal{L}_{N}(t), \mathcal{N}\right]\right\rangle_{t} \quad\left(\text { notation }\langle\cdot\rangle_{t}\right)
$$

Cancellation

- We have

$$
\left(i \partial_{t} W_{t}^{*}\right) W_{t}=-\sqrt{N}\left[a^{*}\left(i \partial_{t} \varphi_{t}\right)+a(\cdots)\right]+\text { irrelevant }
$$

- For $W_{t}^{*} \mathcal{H} W_{t}$ we use the conjugation formulas and expand. We get terms:

linear in a, a^{*}	formally $O\left(N^{1 / 2}\right)$.
quadratic	$O(1)$.
cubic	$O\left(N^{-1 / 2}\right)$.
quartic	$O\left(N^{-1}\right)$.

- There is complete cancellation of linear terms in $W_{t}^{*} \mathcal{H} W_{t}$ with $\left(i \partial_{t} W_{t}^{*}\right) W_{t}$:
linear in $W_{t}^{*} \mathcal{H} W_{t}$

$$
=\sqrt{N} a^{*}\left[-\Delta \varphi_{t}+\left(V *\left|\varphi_{t}\right|^{2}\right) \varphi_{t}\right]+\sqrt{N} a(\cdots)
$$

Grönwall

- We are able to prove

$$
\left\langle\left[i \mathcal{L}_{N}(t), \mathcal{N}\right]\right\rangle_{t} \leq C\langle\mathcal{N}+1\rangle_{t} .
$$

- Hence

$$
\frac{d}{d t}\langle\mathcal{N}\rangle_{t} \leq C\langle\mathcal{N}+1\rangle_{t} .
$$

- Using Grönwall's Lemma, we obtain

$$
\langle\mathcal{N}\rangle_{t} \leq C \exp (C|t|) .
$$

Thank you for your attention!

